Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 196

1.

Newtonian and non-Newtonian blood flow in coiled cerebral aneurysms.

Morales HG, Larrabide I, Geers AJ, Aguilar ML, Frangi AF.

J Biomech. 2013 Sep 3;46(13):2158-64. doi: 10.1016/j.jbiomech.2013.06.034. Epub 2013 Jul 23.

PMID:
23891312
2.

How do coil configuration and packing density influence intra-aneurysmal hemodynamics?

Morales HG, Kim M, Vivas EE, Villa-Uriol MC, Larrabide I, Sola T, Guimaraens L, Frangi AF.

AJNR Am J Neuroradiol. 2011 Nov-Dec;32(10):1935-41. doi: 10.3174/ajnr.A2635. Epub 2011 Sep 1.

3.

Newtonian viscosity model could overestimate wall shear stress in intracranial aneurysm domes and underestimate rupture risk.

Xiang J, Tremmel M, Kolega J, Levy EI, Natarajan SK, Meng H.

J Neurointerv Surg. 2012 Sep;4(5):351-7. doi: 10.1136/neurintsurg-2011-010089. Epub 2011 Sep 19.

PMID:
21990529
4.

Realistic non-Newtonian viscosity modelling highlights hemodynamic differences between intracranial aneurysms with and without surface blebs.

Hippelheuser JE, Lauric A, Cohen AD, Malek AM.

J Biomech. 2014 Nov 28;47(15):3695-703. doi: 10.1016/j.jbiomech.2014.09.027. Epub 2014 Oct 5.

PMID:
25446269
5.

A virtual coiling technique for image-based aneurysm models by dynamic path planning.

Morales HG, Larrabide I, Geers AJ, San Román L, Blasco J, Macho JM, Frangi AF.

IEEE Trans Med Imaging. 2013 Jan;32(1):119-29. doi: 10.1109/TMI.2012.2219626. Epub 2012 Sep 19.

PMID:
23008248
6.

Shear-thinning effects of hemodynamics in patient-specific cerebral aneurysms.

Gambaruto A, Janela J, Moura A, Sequeira A.

Math Biosci Eng. 2013 Jun;10(3):649-65. doi: 10.3934/mbe.2013.10.649.

PMID:
23906142
7.

Experimental and CFD flow studies in an intracranial aneurysm model with Newtonian and non-Newtonian fluids.

Frolov SV, Sindeev SV, Liepsch D, Balasso A.

Technol Health Care. 2016 May 18;24(3):317-33. doi: 10.3233/THC-161132.

PMID:
26835725
8.

Variability of hemodynamic parameters using the common viscosity assumption in a computational fluid dynamics analysis of intracranial aneurysms.

Suzuki T, Takao H, Suzuki T, Suzuki T, Masuda S, Dahmani C, Watanabe M, Mamori H, Ishibashi T, Yamamoto H, Yamamoto M, Murayama Y.

Technol Health Care. 2017;25(1):37-47. doi: 10.3233/THC-161245.

PMID:
27497460
9.

Effect of non-newtonian behavior on hemodynamics of cerebral aneurysms.

Fisher C, Rossmann JS.

J Biomech Eng. 2009 Sep;131(9):091004. doi: 10.1115/1.3148470.

PMID:
19725693
10.

Blood flow in cerebral aneurysms: comparison of phase contrast magnetic resonance and computational fluid dynamics--preliminary experience.

Karmonik C, Klucznik R, Benndorf G.

Rofo. 2008 Mar;180(3):209-15. doi: 10.1055/s-2008-1027135.

PMID:
18278729
11.

Blood flow dynamics in saccular aneurysm models of the basilar artery.

Valencia AA, Guzmán AM, Finol EA, Amon CH.

J Biomech Eng. 2006 Aug;128(4):516-26.

PMID:
16813443
12.

Finite element modeling of embolic coil deployment: multifactor characterization of treatment effects on cerebral aneurysm hemodynamics.

Babiker MH, Chong B, Gonzalez LF, Cheema S, Frakes DH.

J Biomech. 2013 Nov 15;46(16):2809-16. doi: 10.1016/j.jbiomech.2013.08.021. Epub 2013 Sep 18.

PMID:
24119679
13.

Influence of stent configuration on cerebral aneurysm fluid dynamics.

Babiker MH, Gonzalez LF, Ryan J, Albuquerque F, Collins D, Elvikis A, Frakes DH.

J Biomech. 2012 Feb 2;45(3):440-7. doi: 10.1016/j.jbiomech.2011.12.016. Epub 2012 Jan 5.

PMID:
22226405
14.

PIV-measured versus CFD-predicted flow dynamics in anatomically realistic cerebral aneurysm models.

Ford MD, Nikolov HN, Milner JS, Lownie SP, Demont EM, Kalata W, Loth F, Holdsworth DW, Steinman DA.

J Biomech Eng. 2008 Apr;130(2):021015. doi: 10.1115/1.2900724.

PMID:
18412502
15.

Impact of stents and flow diverters on hemodynamics in idealized aneurysm models.

Seshadhri S, Janiga G, Beuing O, Skalej M, Thévenin D.

J Biomech Eng. 2011 Jul;133(7):071005. doi: 10.1115/1.4004410.

PMID:
21823744
16.

Numerical investigation of the hemodynamics in anatomically realistic lateral cerebral aneurysms.

Valencia A, Munizaga J, Rivera R, Bravo E.

Conf Proc IEEE Eng Med Biol Soc. 2010;2010:2616-21. doi: 10.1109/IEMBS.2010.5626613.

PMID:
21096182
17.

Finite element modeling of endovascular coiling and flow diversion enables hemodynamic prediction of complex treatment strategies for intracranial aneurysm.

Damiano RJ, Ma D, Xiang J, Siddiqui AH, Snyder KV, Meng H.

J Biomech. 2015 Sep 18;48(12):3332-40. doi: 10.1016/j.jbiomech.2015.06.018. Epub 2015 Jun 27.

18.

Hemodynamic impact of cerebral aneurysm endovascular treatment devices: coils and flow diverters.

Goubergrits L, Schaller J, Kertzscher U, Woelken T, Ringelstein M, Spuler A.

Expert Rev Med Devices. 2014 Jul;11(4):361-73. doi: 10.1586/17434440.2014.925395. Review.

PMID:
24918904
19.

Comparison among different high porosity stent configurations: hemodynamic effects of treatment in a large cerebral aneurysm.

Roszelle BN, Nair P, Gonzalez LF, Haithem Babiker M, Ryan J, Frakes D.

J Biomech Eng. 2014 Feb;136(2):021013. doi: 10.1115/1.4026257.

PMID:
24337100
20.

Numerical simulations of flow in cerebral aneurysms: comparison of CFD results and in vivo MRI measurements.

Rayz VL, Boussel L, Acevedo-Bolton G, Martin AJ, Young WL, Lawton MT, Higashida R, Saloner D.

J Biomech Eng. 2008 Oct;130(5):051011. doi: 10.1115/1.2970056.

PMID:
19045518

Supplemental Content

Support Center