Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 229

1.

Comparison of hemodynamics in the ascending aorta between pulsatile and continuous flow left ventricular assist devices using computational fluid dynamics based on computed tomography images.

Karmonik C, Partovi S, Schmack B, Weymann A, Loebe M, Noon GP, Piontek P, Karck M, Lumsden AB, Ruhparwar A.

Artif Organs. 2014 Feb;38(2):142-8. doi: 10.1111/aor.12132.

PMID:
23889366
2.

Computational fluid dynamics in patients with continuous-flow left ventricular assist device support show hemodynamic alterations in the ascending aorta.

Karmonik C, Partovi S, Loebe M, Schmack B, Weymann A, Lumsden AB, Karck M, Ruhparwar A.

J Thorac Cardiovasc Surg. 2014 Apr;147(4):1326-1333.e1. doi: 10.1016/j.jtcvs.2013.09.069.

3.

Computational fluid dynamic study of hemodynamic effects on aortic root blood flow of systematically varied left ventricular assist device graft anastomosis design.

Callington A, Long Q, Mohite P, Simon A, Mittal TK.

J Thorac Cardiovasc Surg. 2015 Sep;150(3):696-704. doi: 10.1016/j.jtcvs.2015.05.034.

PMID:
26092505
4.

Influence of LVAD cannula outflow tract location on hemodynamics in the ascending aorta: a patient-specific computational fluid dynamics approach.

Karmonik C, Partovi S, Loebe M, Schmack B, Ghodsizad A, Robbin MR, Noon GP, Kallenbach K, Karck M, Davies MG, Lumsden AB, Ruhparwar A.

ASAIO J. 2012 Nov-Dec;58(6):562-7. doi: 10.1097/MAT.0b013e31826d6232.

PMID:
23013842
5.

In vitro characterization of aortic retrograde and antegrade flow from pulsatile and non-pulsatile ventricular assist devices.

DiGiorgi PL, Smith DL, Naka Y, Oz MC.

J Heart Lung Transplant. 2004 Feb;23(2):186-92.

PMID:
14761766
6.

A computational fluid dynamics comparison between different outflow graft anastomosis locations of Left Ventricular Assist Device (LVAD) in a patient-specific aortic model.

Caruso MV, Gramigna V, Rossi M, Serraino GF, Renzulli A, Fragomeni G.

Int J Numer Method Biomed Eng. 2015 Feb;31(2). doi: 10.1002/cnm.2700.

PMID:
25514870
7.

Effect of cannula position in the thoracic aorta with continuous left ventricular support: four-dimensional flow-sensitive magnetic resonance imaging in an in vitro model.

Benk C, Mauch A, Beyersdorf F, Klemm R, Russe M, Blanke P, Korvink JG, Markl M, Jung B.

Eur J Cardiothorac Surg. 2013 Sep;44(3):551-8. doi: 10.1093/ejcts/ezt095.

PMID:
23449865
8.

Computational fluid dynamics analysis of surgical adjustment of left ventricular assist device implantation to minimise stroke risk.

Osorio AF, Osorio R, Ceballos A, Tran R, Clark W, Divo EA, Argueta-Morales IR, Kassab AJ, DeCampli WM.

Comput Methods Biomech Biomed Engin. 2013;16(6):622-38. doi: 10.1080/10255842.2011.629616.

PMID:
22185643
9.

Continuous and Pulsatile Pediatric Ventricular Assist Device Hemodynamics with a Viscoelastic Blood Model.

Good BC, Deutsch S, Manning KB.

Cardiovasc Eng Technol. 2016 Mar;7(1):23-43. doi: 10.1007/s13239-015-0252-8. Erratum in: Cardiovasc Eng Technol. 2016 Sep;7(3):305-7.

PMID:
26643646
10.

Effects of pulsatile- and continuous-flow left ventricular assist devices on left ventricular unloading.

Garcia S, Kandar F, Boyle A, Colvin-Adams M, Lliao K, Joyce L, John R.

J Heart Lung Transplant. 2008 Mar;27(3):261-7. doi: 10.1016/j.healun.2007.12.001.

PMID:
18342746
11.

A mock circulatory system to assess the performance of continuous-flow left ventricular assist devices (LVADs): does axial flow unload better than centrifugal LVAD?

Sénage T, Février D, Michel M, Pichot E, Duveau D, Tsui S, Trochu JN, Roussel JC.

ASAIO J. 2014 Mar-Apr;60(2):140-7. doi: 10.1097/MAT.0000000000000045.

12.
14.

Effect of LVAD outlet graft anastomosis angle on the aortic valve, wall, and flow.

Inci G, Sorgüven E.

ASAIO J. 2012 Jul-Aug;58(4):373-81. doi: 10.1097/MAT.0b013e3182578b6a.

PMID:
22739783
15.

Ascending aorta outflow graft location and pulsatile ventricular assist provide optimal hemodynamic support in an adult mock circulation.

Litwak KN, Koenig SC, Cheng RC, Giridharan GA, Gillars KJ, Pantalos GM.

Artif Organs. 2005 Aug;29(8):629-35.

PMID:
16048479
16.

Development and validation of a computational fluid dynamics methodology for simulation of pulsatile left ventricular assist devices.

Medvitz RB, Kreider JW, Manning KB, Fontaine AA, Deutsch S, Paterson EG.

ASAIO J. 2007 Mar-Apr;53(2):122-31.

PMID:
17413548
17.

Computational fluid dynamics analysis and PIV validation of a bionic vortex flow pulsatile LVAD.

Xu L, Yang M, Ye L, Dong Z.

Technol Health Care. 2015;23 Suppl 2:S443-51. doi: 10.3233/THC-150981.

PMID:
26410511
18.

Flow analysis of ventricular assist device inflow and outflow cannula positioning using a naturally shaped ventricle and aortic branch.

Laumen M, Kaufmann T, Timms D, Schlanstein P, Jansen S, Gregory S, Wong KC, Schmitz-Rode T, Steinseifer U.

Artif Organs. 2010 Oct;34(10):798-806. doi: 10.1111/j.1525-1594.2010.01098.x.

PMID:
20964698
19.

Computational fluid dynamics investigation of chronic aortic dissection hemodynamics versus normal aorta.

Karmonik C, Müller-Eschner M, Partovi S, Geisbüsch P, Ganten MK, Bismuth J, Davies MG, Böckler D, Loebe M, Lumsden AB, von Tengg-Kobligk H.

Vasc Endovascular Surg. 2013 Nov;47(8):625-31. doi: 10.1177/1538574413503561.

PMID:
24048257
20.

Review of recent results using computational fluid dynamics simulations in patients receiving mechanical assist devices for end-stage heart failure.

Farag MB, Karmonik C, Rengier F, Loebe M, Karck M, von Tengg-Kobligk H, Ruhparwar A, Partovi S.

Methodist Debakey Cardiovasc J. 2014 Jul-Sep;10(3):185-9. doi: 10.14797/mdcj-10-3-185. Review.

Items per page

Supplemental Content

Support Center