Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 124

1.

Differential gene expression by endothelial cells under positive and negative streamwise gradients of high wall shear stress.

Dolan JM, Meng H, Sim FJ, Kolega J.

Am J Physiol Cell Physiol. 2013 Oct 15;305(8):C854-66. doi: 10.1152/ajpcell.00315.2012. Epub 2013 Jul 24.

2.

High fluid shear stress and spatial shear stress gradients affect endothelial proliferation, survival, and alignment.

Dolan JM, Meng H, Singh S, Paluch R, Kolega J.

Ann Biomed Eng. 2011 Jun;39(6):1620-31. doi: 10.1007/s10439-011-0267-8. Epub 2011 Feb 11.

3.

Endothelial cells express a unique transcriptional profile under very high wall shear stress known to induce expansive arterial remodeling.

Dolan JM, Sim FJ, Meng H, Kolega J.

Am J Physiol Cell Physiol. 2012 Apr 15;302(8):C1109-18. doi: 10.1152/ajpcell.00369.2011. Epub 2011 Dec 14.

4.

Endothelial cell layer subjected to impinging flow mimicking the apex of an arterial bifurcation.

Szymanski MP, Metaxa E, Meng H, Kolega J.

Ann Biomed Eng. 2008 Oct;36(10):1681-9. doi: 10.1007/s10439-008-9540-x. Epub 2008 Jul 25.

5.

De novo cerebral aneurysm formation associated with proximal stenosis.

Kono K, Masuo O, Nakao N, Meng H.

Neurosurgery. 2013 Dec;73(6):E1080-90. doi: 10.1227/NEU.0000000000000065.

PMID:
23839522
6.

Curvature effect on hemodynamic conditions at the inner bend of the carotid siphon and its relation to aneurysm formation.

Lauric A, Hippelheuser J, Safain MG, Malek AM.

J Biomech. 2014 Sep 22;47(12):3018-27. doi: 10.1016/j.jbiomech.2014.06.042. Epub 2014 Jul 10.

7.

Proximal stenosis may induce initiation of cerebral aneurysms by increasing wall shear stress and wall shear stress gradient.

Kono K, Fujimoto T, Terada T.

Int J Numer Method Biomed Eng. 2014 Oct;30(10):942-50. doi: 10.1002/cnm.2637. Epub 2014 Apr 7.

PMID:
24706583
8.

High wall shear stress and spatial gradients in vascular pathology: a review.

Dolan JM, Kolega J, Meng H.

Ann Biomed Eng. 2013 Jul;41(7):1411-27. doi: 10.1007/s10439-012-0695-0. Epub 2012 Dec 11. Review.

9.

Molecular alterations associated with aneurysmal remodeling are localized in the high hemodynamic stress region of a created carotid bifurcation.

Wang Z, Kolega J, Hoi Y, Gao L, Swartz DD, Levy EI, Mocco J, Meng H.

Neurosurgery. 2009 Jul;65(1):169-77; discussion 177-8. doi: 10.1227/01.NEU.0000343541.85713.01.

10.

Colocalization of thin-walled dome regions with low hemodynamic wall shear stress in unruptured cerebral aneurysms.

Kadasi LM, Dent WC, Malek AM.

J Neurosurg. 2013 Jul;119(1):172-9. doi: 10.3171/2013.2.JNS12968. Epub 2013 Mar 29.

PMID:
23540271
11.

Vascular cell adhesion molecule-1 expression in endothelial cells exposed to physiological coronary wall shear stresses.

O'Keeffe LM, Muir G, Piterina AV, McGloughlin T.

J Biomech Eng. 2009 Aug;131(8):081003. doi: 10.1115/1.3148191.

PMID:
19604015
12.

Characterization of critical hemodynamics contributing to aneurysmal remodeling at the basilar terminus in a rabbit model.

Metaxa E, Tremmel M, Natarajan SK, Xiang J, Paluch RA, Mandelbaum M, Siddiqui AH, Kolega J, Mocco J, Meng H.

Stroke. 2010 Aug;41(8):1774-82. doi: 10.1161/STROKEAHA.110.585992. Epub 2010 Jul 1. Erratum in: Stroke. 2012 Jul;43(7):e69.

13.

Nitric oxide-dependent stimulation of endothelial cell proliferation by sustained high flow.

Metaxa E, Meng H, Kaluvala SR, Szymanski MP, Paluch RA, Kolega J.

Am J Physiol Heart Circ Physiol. 2008 Aug;295(2):H736-42. doi: 10.1152/ajpheart.01156.2007. Epub 2008 Jun 13.

14.

Impact of main branch stenting on endothelial shear stress: role of side branch diameter, angle and lesion.

Chen HY, Moussa ID, Davidson C, Kassab GS.

J R Soc Interface. 2012 Jun 7;9(71):1187-93. doi: 10.1098/rsif.2011.0675. Epub 2011 Nov 23.

15.

Wall shear stress gradient analysis within an idealized stenosis using non-Newtonian flow.

Schirmer CM, Malek AM.

Neurosurgery. 2007 Oct;61(4):853-63; discussion 863-4.

PMID:
17986948
16.

Aneurysm growth occurs at region of low wall shear stress: patient-specific correlation of hemodynamics and growth in a longitudinal study.

Boussel L, Rayz V, McCulloch C, Martin A, Acevedo-Bolton G, Lawton M, Higashida R, Smith WS, Young WL, Saloner D.

Stroke. 2008 Nov;39(11):2997-3002. doi: 10.1161/STROKEAHA.108.521617. Epub 2008 Aug 7.

17.

Local hemodynamics at the rupture point of cerebral aneurysms determined by computational fluid dynamics analysis.

Omodaka S, Sugiyama S, Inoue T, Funamoto K, Fujimura M, Shimizu H, Hayase T, Takahashi A, Tominaga T.

Cerebrovasc Dis. 2012;34(2):121-9. doi: 10.1159/000339678. Epub 2012 Aug 1.

PMID:
22965244
18.

Mis-sizing of stent promotes intimal hyperplasia: impact of endothelial shear and intramural stress.

Chen HY, Sinha AK, Choy JS, Zheng H, Sturek M, Bigelow B, Bhatt DL, Kassab GS.

Am J Physiol Heart Circ Physiol. 2011 Dec;301(6):H2254-63. doi: 10.1152/ajpheart.00240.2011. Epub 2011 Sep 16.

19.

Newtonian viscosity model could overestimate wall shear stress in intracranial aneurysm domes and underestimate rupture risk.

Xiang J, Tremmel M, Kolega J, Levy EI, Natarajan SK, Meng H.

J Neurointerv Surg. 2012 Sep;4(5):351-7. doi: 10.1136/neurintsurg-2011-010089. Epub 2011 Sep 19.

PMID:
21990529
20.

Wall shear stress distribution inside growing cerebral aneurysm.

Tanoue T, Tateshima S, Villablanca JP, ViƱuela F, Tanishita K.

AJNR Am J Neuroradiol. 2011 Oct;32(9):1732-7. doi: 10.3174/ajnr.A2607.

Supplemental Content

Support Center