Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 76

1.

Chemical unzipping of WS2 nanotubes.

Nethravathi C, Jeffery AA, Rajamathi M, Kawamoto N, Tenne R, Golberg D, Bando Y.

ACS Nano. 2013 Aug 27;7(8):7311-7. doi: 10.1021/nn4029635. Epub 2013 Jul 24.

PMID:
23883418
2.

Clean WS2 and MoS2 Nanoribbons Generated by Laser-Induced Unzipping of the Nanotubes.

Vasu K, Yamijala SS, Zak A, Gopalakrishnan K, Pati SK, Rao CN.

Small. 2015 Aug 26;11(32):3916-20. doi: 10.1002/smll.201500350. Epub 2015 May 21.

PMID:
25996308
3.

Clean nanotube unzipping by abrupt thermal expansion of molecular nitrogen: graphene nanoribbons with atomically smooth edges.

Morelos-Gómez A, Vega-Díaz SM, González VJ, Tristán-López F, Cruz-Silva R, Fujisawa K, Muramatsu H, Hayashi T, Mi X, Shi Y, Sakamoto H, Khoerunnisa F, Kaneko K, Sumpter BG, Kim YA, Meunier V, Endo M, Muñoz-Sandoval E, Terrones M.

ACS Nano. 2012 Mar 27;6(3):2261-72. doi: 10.1021/nn2043252. Epub 2012 Mar 6.

PMID:
22360783
4.

Orientation-selective unzipping of carbon nanotubes.

Zhang H, Zhao M, He T, Zhang X, Wang Z, Xi Z, Yan S, Liu X, Xia Y, Mei L.

Phys Chem Chem Phys. 2010 Nov 7;12(41):13674-80. doi: 10.1039/c002719g. Epub 2010 Sep 24.

PMID:
20871869
5.

Theoretical aspects of WS₂ nanotube chemical unzipping.

Kvashnin DG, Antipina LY, Sorokin PB, Tenne R, Golberg D.

Nanoscale. 2014 Jul 21;6(14):8400-4. doi: 10.1039/c4nr00437j.

PMID:
24942092
6.

Electric field induced orientation-selective unzipping of zigzag carbon nanotubes upon oxidation.

Chen C, Miao L, Xu K, Yao J, Li C, Jiang J.

Phys Chem Chem Phys. 2013 May 7;15(17):6431-6. doi: 10.1039/c3cp50474c.

PMID:
23525224
7.

Synthesis and Characterization of Cobalt-Doped WS2 Nanorods for Lithium Battery Applications.

Wang S, Li G, Du G, Li L, Jiang X, Feng C, Guo Z, Kim S.

Nanoscale Res Lett. 2010 May 23;5(8):1301-6. doi: 10.1007/s11671-010-9642-x.

8.

Hydrogenation, purification, and unzipping of carbon nanotubes by reaction with molecular hydrogen: road to graphane nanoribbons.

Talyzin AV, Luzan S, Anoshkin IV, Nasibulin AG, Jiang H, Kauppinen EI, Mikoushkin VM, Shnitov VV, Marchenko DE, Noréus D.

ACS Nano. 2011 Jun 28;5(6):5132-40. doi: 10.1021/nn201224k. Epub 2011 Apr 29.

PMID:
21504190
9.

Sharpening the chemical scissors to unzip carbon nanotubes: crystalline graphene nanoribbons.

Terrones M.

ACS Nano. 2010 Apr 27;4(4):1775-81. doi: 10.1021/nn1006607. Review.

PMID:
20420468
10.

Exfoliation of WS2 in the semiconducting phase using a group of lithium halides: a new method of Li intercalation.

Ghorai A, Midya A, Maiti R, Ray SK.

Dalton Trans. 2016 Oct 14;45(38):14979-87. doi: 10.1039/c6dt02823c. Epub 2016 Aug 25.

PMID:
27560159
11.

Formation of nitrogen-doped graphene nanoribbons via chemical unzipping.

Cruz-Silva R, Morelos-Gómez A, Vega-Díaz S, Tristán-López F, Elias AL, Perea-López N, Muramatsu H, Hayashi T, Fujisawa K, Kim YA, Endo M, Terrones M.

ACS Nano. 2013 Mar 26;7(3):2192-204. doi: 10.1021/nn305179b. Epub 2013 Mar 4.

PMID:
23421313
12.

Unzipping carbon nanotubes at high impact.

Ozden S, Autreto PA, Tiwary CS, Khatiwada S, Machado L, Galvao DS, Vajtai R, Barrera EV, Ajayan PM.

Nano Lett. 2014 Jul 9;14(7):4131-7. doi: 10.1021/nl501753n. Epub 2014 Jun 16.

PMID:
24915176
13.

Single step synthesis of graphene nanoribbons by catalyst particle size dependent cutting of multiwalled carbon nanotubes.

Parashar UK, Bhandari S, Srivastava RK, Jariwala D, Srivastava A.

Nanoscale. 2011 Sep 1;3(9):3876-82. doi: 10.1039/c1nr10483g. Epub 2011 Aug 15.

PMID:
21842103
14.

Stable Metallic 1T-WS2 Nanoribbons Intercalated with Ammonia Ions: The Correlation between Structure and Electrical/Optical Properties.

Liu Q, Li X, Xiao Z, Zhou Y, Chen H, Khalil A, Xiang T, Xu J, Chu W, Wu X, Yang J, Wang C, Xiong Y, Jin C, Ajayan PM, Song L.

Adv Mater. 2015 Sep 2;27(33):4837-44. doi: 10.1002/adma.201502134. Epub 2015 Jul 14.

PMID:
26177725
15.

Longitudinal cutting of pure and doped carbon nanotubes to form graphitic nanoribbons using metal clusters as nanoscalpels.

Elías AL, Botello-Méndez AR, Meneses-Rodríguez D, Jehová González V, Ramírez-González D, Ci L, Muñoz-Sandoval E, Ajayan PM, Terrones H, Terrones M.

Nano Lett. 2010 Feb 10;10(2):366-72. doi: 10.1021/nl901631z.

PMID:
19691280
16.

Clean unzipping by steam etching to synthesize graphene nanoribbons.

Zhuang N, Liu C, Jia L, Wei L, Cai J, Guo Y, Zhang Y, Hu X, Chen J, Chen X, Tang Y.

Nanotechnology. 2013 Aug 16;24(32):325604. doi: 10.1088/0957-4484/24/32/325604. Epub 2013 Jul 18.

PMID:
23867357
17.

Revealing the anomalous tensile properties of WS2 nanotubes by in situ transmission electron microscopy.

Tang DM, Wei X, Wang MS, Kawamoto N, Bando Y, Zhi C, Mitome M, Zak A, Tenne R, Golberg D.

Nano Lett. 2013 Mar 13;13(3):1034-40. doi: 10.1021/nl304244h. Epub 2013 Feb 25.

PMID:
23421847
18.

The effect of electron beam irradiation on WS2 nanotubes.

Ding K, Feng Y, Huang S, Li B, Wang Y, Liu H, Qian G.

Nanotechnology. 2012 Oct 19;23(41):415703. Epub 2012 Sep 27.

PMID:
23018790
19.

Transition-metal-catalyzed unzipping of single-walled carbon nanotubes into narrow graphene nanoribbons at low temperature.

Wang J, Ma L, Yuan Q, Zhu L, Ding F.

Angew Chem Int Ed Engl. 2011 Aug 22;50(35):8041-5. doi: 10.1002/anie.201101022. Epub 2011 Jul 14.

PMID:
21761515
20.

Hybrid chalcogenide nanoparticles: 2D-WS2 nanocrystals inside nested WS2 fullerenes.

Hoshyargar F, Corrales TP, Branscheid R, Kolb U, Kappl M, Panthöfer M, Tremel W.

Dalton Trans. 2013 Oct 28;42(40):14568-75. doi: 10.1039/c3dt51537k.

PMID:
23982722

Supplemental Content

Support Center