Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 90

1.

Molecular organization of the nanoscale surface structures of the dragonfly Hemianax papuensis wing epicuticle.

Ivanova EP, Nguyen SH, Webb HK, Hasan J, Truong VK, Lamb RN, Duan X, Tobin MJ, Mahon PJ, Crawford RJ.

PLoS One. 2013 Jul 9;8(7):e67893. doi: 10.1371/journal.pone.0067893. Print 2013.

2.

Dual role of outer epicuticular lipids in determining the wettability of dragonfly wings.

Nguyen SH, Webb HK, Hasan J, Tobin MJ, Crawford RJ, Ivanova EP.

Colloids Surf B Biointerfaces. 2013 Jun 1;106:126-34. doi: 10.1016/j.colsurfb.2013.01.042. Epub 2013 Jan 29.

PMID:
23434701
3.

Mechanism of the wing colouration in the dragonfly Zenithoptera lanei (Odonata: Libellulidae) and its role in intraspecific communication.

Guillermo-Ferreira R, Bispo PC, Appel E, Kovalev A, Gorb SN.

J Insect Physiol. 2015 Oct;81:129-36. doi: 10.1016/j.jinsphys.2015.07.010. Epub 2015 Jul 17.

4.

Structural and optical investigation on the wings of Idea malabarica (Moore, 1877).

Sackey J, Nuru ZY, Sone BT, Maaza M.

IET Nanobiotechnol. 2017 Feb;11(1):71-76. doi: 10.1049/iet-nbt.2016.0049.

PMID:
28476965
5.

Antifatigue properties of dragonfly Pantala flavescens wings.

Li XJ, Zhang ZH, Liang YH, Ren LQ, Jie M, Yang ZG.

Microsc Res Tech. 2014 May;77(5):356-62. doi: 10.1002/jemt.22352. Epub 2014 Mar 13.

PMID:
24623401
6.

The susceptibility of Staphylococcus aureus CIP 65.8 and Pseudomonas aeruginosa ATCC 9721 cells to the bactericidal action of nanostructured Calopteryx haemorrhoidalis damselfly wing surfaces.

Truong VK, Geeganagamage NM, Baulin VA, Vongsvivut J, Tobin MJ, Luque P, Crawford RJ, Ivanova EP.

Appl Microbiol Biotechnol. 2017 Jun;101(11):4683-4690. doi: 10.1007/s00253-017-8205-9. Epub 2017 Mar 1.

PMID:
28246886
7.

The nature of inherent bactericidal activity: insights from the nanotopology of three species of dragonfly.

Mainwaring DE, Nguyen SH, Webb H, Jakubov T, Tobin M, Lamb RN, Wu AH, Marchant R, Crawford RJ, Ivanova EP.

Nanoscale. 2016 Mar 28;8(12):6527-34. doi: 10.1039/c5nr08542j.

PMID:
26935293
8.

Description of a new surface morphology for chitin extracted from wings of cockroach (Periplaneta americana).

Kaya M, Baran T.

Int J Biol Macromol. 2015 Apr;75:7-12. doi: 10.1016/j.ijbiomac.2015.01.015. Epub 2015 Jan 15.

PMID:
25597430
9.

Beyond the wing planform: morphological differentiation between migratory and nonmigratory dragonfly species.

Suárez-Tovar CM, Sarmiento CE.

J Evol Biol. 2016 Apr;29(4):690-703. doi: 10.1111/jeb.12830. Epub 2016 Feb 6.

10.

Sex-related effects in the superhydrophobic properties of damselfly wings in young and old Calopteryx splendens.

Kuitunen K, Kovalev A, Gorb SN.

PLoS One. 2014 Feb 10;9(2):e88627. doi: 10.1371/journal.pone.0088627. eCollection 2014.

11.

Biophysical model of bacterial cell interactions with nanopatterned cicada wing surfaces.

Pogodin S, Hasan J, Baulin VA, Webb HK, Truong VK, Phong Nguyen TH, Boshkovikj V, Fluke CJ, Watson GS, Watson JA, Crawford RJ, Ivanova EP.

Biophys J. 2013 Feb 19;104(4):835-40. doi: 10.1016/j.bpj.2012.12.046.

12.

Spatial variations and temporal metastability of the self-cleaning and superhydrophobic properties of damselfly wings.

Hasan J, Webb HK, Truong VK, Watson GS, Watson JA, Tobin MJ, Gervinskas G, Juodkazis S, Wang JY, Crawford RJ, Ivanova EP.

Langmuir. 2012 Dec 18;28(50):17404-9. doi: 10.1021/la303560w. Epub 2012 Dec 4.

PMID:
23181510
13.

The unusual tracheal system within the wing membrane of a dragonfly.

Guillermo-Ferreira R, Appel E, Urban P, Bispo PC, Gorb SN.

Biol Lett. 2017 May;13(5). pii: 20160960. doi: 10.1098/rsbl.2016.0960.

PMID:
28515332
14.

Bactericidal activity of black silicon.

Ivanova EP, Hasan J, Webb HK, Gervinskas G, Juodkazis S, Truong VK, Wu AH, Lamb RN, Baulin VA, Watson GS, Watson JA, Mainwaring DE, Crawford RJ.

Nat Commun. 2013;4:2838. doi: 10.1038/ncomms3838.

16.

High-spatial-resolution mapping of superhydrophobic cicada wing surface chemistry using infrared microspectroscopy and infrared imaging at two synchrotron beamlines.

Tobin MJ, Puskar L, Hasan J, Webb HK, Hirschmugl CJ, Nasse MJ, Gervinskas G, Juodkazis S, Watson GS, Watson JA, Crawford RJ, Ivanova EP.

J Synchrotron Radiat. 2013 May;20(Pt 3):482-9. doi: 10.1107/S0909049513004056. Epub 2013 Mar 22.

PMID:
23592628
17.
18.

Flexible flapping wings with self-organized microwrinkles.

Tanaka H, Okada H, Shimasue Y, Liu H.

Bioinspir Biomim. 2015 Jun 29;10(4):046005. doi: 10.1088/1748-3190/10/4/046005.

PMID:
26119657
19.

[Functional role of dragonfly legs before and after hatching: reorganization of coordinating interactions].

Sviderskiĭ VL, Plotnikova SI, Gorelkin VS, Severina IIu, Isavnina IL.

Ross Fiziol Zh Im I M Sechenova. 2012 Nov;98(11):1432-40. Russian.

PMID:
23431771
20.

Effects of blood in veins of dragonfly wing on the vibration characteristics.

Hou D, Yin Y, Zhao H, Zhong Z.

Comput Biol Med. 2015 Mar;58:14-9. doi: 10.1016/j.compbiomed.2014.12.018. Epub 2014 Dec 31.

PMID:
25577611

Supplemental Content

Support Center