Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 106

1.

Interplay between structure-specific endonucleases for crossover control during Caenorhabditis elegans meiosis.

Saito TT, Lui DY, Kim HM, Meyer K, Colaiácovo MP.

PLoS Genet. 2013;9(7):e1003586. doi: 10.1371/journal.pgen.1003586. Epub 2013 Jul 18.

2.

Combinatorial regulation of meiotic holliday junction resolution in C. elegans by HIM-6 (BLM) helicase, SLX-4, and the SLX-1, MUS-81 and XPF-1 nucleases.

Agostinho A, Meier B, Sonneville R, Jagut M, Woglar A, Blow J, Jantsch V, Gartner A.

PLoS Genet. 2013;9(7):e1003591. doi: 10.1371/journal.pgen.1003591. Epub 2013 Jul 18. Erratum in: PLoS Genet. 2013 Aug;9(8). doi:10.1371/annotation/d8c73205-151d-4e22-89c6-3aa574037d10.

3.

Joint molecule resolution requires the redundant activities of MUS-81 and XPF-1 during Caenorhabditis elegans meiosis.

O'Neil NJ, Martin JS, Youds JL, Ward JD, Petalcorin MI, Rose AM, Boulton SJ.

PLoS Genet. 2013;9(7):e1003582. doi: 10.1371/journal.pgen.1003582. Epub 2013 Jul 18.

4.

Caenorhabditis elegans HIM-18/SLX-4 interacts with SLX-1 and XPF-1 and maintains genomic integrity in the germline by processing recombination intermediates.

Saito TT, Youds JL, Boulton SJ, Colaiácovo MP.

PLoS Genet. 2009 Nov;5(11):e1000735. doi: 10.1371/journal.pgen.1000735. Epub 2009 Nov 20.

5.

SLX-1 is required for maintaining genomic integrity and promoting meiotic noncrossovers in the Caenorhabditis elegans germline.

Saito TT, Mohideen F, Meyer K, Harper JW, Colaiácovo MP.

PLoS Genet. 2012 Aug;8(8):e1002888. doi: 10.1371/journal.pgen.1002888. Epub 2012 Aug 23.

6.

An elegans Solution for Crossover Formation.

Bellendir SP, Sekelsky J.

PLoS Genet. 2013;9(7):e1003658. doi: 10.1371/journal.pgen.1003658. Epub 2013 Jul 18. No abstract available.

7.

Crossover recombination mediated by HIM-18/SLX4-associated nucleases.

Saito TT, Colaiácovo MP.

Worm. 2014 Mar 5;3:e28233. doi: 10.4161/worm.28233. eCollection 2014.

8.

Three structure-selective endonucleases are essential in the absence of BLM helicase in Drosophila.

Andersen SL, Kuo HK, Savukoski D, Brodsky MH, Sekelsky J.

PLoS Genet. 2011 Oct;7(10):e1002315. doi: 10.1371/journal.pgen.1002315. Epub 2011 Oct 13.

9.

COM-1 promotes homologous recombination during Caenorhabditis elegans meiosis by antagonizing Ku-mediated non-homologous end joining.

Lemmens BB, Johnson NM, Tijsterman M.

PLoS Genet. 2013;9(2):e1003276. doi: 10.1371/journal.pgen.1003276. Epub 2013 Feb 7.

10.

A quality control mechanism coordinates meiotic prophase events to promote crossover assurance.

Deshong AJ, Ye AL, Lamelza P, Bhalla N.

PLoS Genet. 2014 Apr 24;10(4):e1004291. doi: 10.1371/journal.pgen.1004291. eCollection 2014 Apr.

11.

REC-1 and HIM-5 distribute meiotic crossovers and function redundantly in meiotic double-strand break formation in Caenorhabditis elegans.

Chung G, Rose AM, Petalcorin MI, Martin JS, Kessler Z, Sanchez-Pulido L, Ponting CP, Yanowitz JL, Boulton SJ.

Genes Dev. 2015 Sep 15;29(18):1969-79. doi: 10.1101/gad.266056.115.

12.

The SMC-5/6 Complex and the HIM-6 (BLM) Helicase Synergistically Promote Meiotic Recombination Intermediate Processing and Chromosome Maturation during Caenorhabditis elegans Meiosis.

Hong Y, Sonneville R, Agostinho A, Meier B, Wang B, Blow JJ, Gartner A.

PLoS Genet. 2016 Mar 24;12(3):e1005872. doi: 10.1371/journal.pgen.1005872. eCollection 2016 Mar.

13.

The C. elegans DSB-2 protein reveals a regulatory network that controls competence for meiotic DSB formation and promotes crossover assurance.

Rosu S, Zawadzki KA, Stamper EL, Libuda DE, Reese AL, Dernburg AF, Villeneuve AM.

PLoS Genet. 2013;9(8):e1003674. doi: 10.1371/journal.pgen.1003674. Epub 2013 Aug 8.

14.

BLM helicase ortholog Sgs1 is a central regulator of meiotic recombination intermediate metabolism.

De Muyt A, Jessop L, Kolar E, Sourirajan A, Chen J, Dayani Y, Lichten M.

Mol Cell. 2012 Apr 13;46(1):43-53. doi: 10.1016/j.molcel.2012.02.020.

15.

DNA helicase HIM-6/BLM both promotes MutSγ-dependent crossovers and antagonizes MutSγ-independent interhomolog associations during caenorhabditis elegans meiosis.

Schvarzstein M, Pattabiraman D, Libuda DE, Ramadugu A, Tam A, Martinez-Perez E, Roelens B, Zawadzki KA, Yokoo R, Rosu S, Severson AF, Meyer BJ, Nabeshima K, Villeneuve AM.

Genetics. 2014 Sep;198(1):193-207. doi: 10.1534/genetics.114.161513. Epub 2014 Jul 21.

16.

RTEL-1 enforces meiotic crossover interference and homeostasis.

Youds JL, Mets DG, McIlwraith MJ, Martin JS, Ward JD, ONeil NJ, Rose AM, West SC, Meyer BJ, Boulton SJ.

Science. 2010 Mar 5;327(5970):1254-8. doi: 10.1126/science.1183112.

17.

Identification of DSB-1, a protein required for initiation of meiotic recombination in Caenorhabditis elegans, illuminates a crossover assurance checkpoint.

Stamper EL, Rodenbusch SE, Rosu S, Ahringer J, Villeneuve AM, Dernburg AF.

PLoS Genet. 2013;9(8):e1003679. doi: 10.1371/journal.pgen.1003679. Epub 2013 Aug 8.

18.

A C. elegans eIF4E-family member upregulates translation at elevated temperatures of mRNAs encoding MSH-5 and other meiotic crossover proteins.

Song A, Labella S, Korneeva NL, Keiper BD, Aamodt EJ, Zetka M, Rhoads RE.

J Cell Sci. 2010 Jul 1;123(Pt 13):2228-37. doi: 10.1242/jcs.063107. Epub 2010 Jun 8.

19.

Drosophila FANCM helicase prevents spontaneous mitotic crossovers generated by the MUS81 and SLX1 nucleases.

Kuo HK, McMahan S, Rota CM, Kohl KP, Sekelsky J.

Genetics. 2014 Nov;198(3):935-45. doi: 10.1534/genetics.114.168096. Epub 2014 Sep 8.

20.

Processing of joint molecule intermediates by structure-selective endonucleases during homologous recombination in eukaryotes.

Schwartz EK, Heyer WD.

Chromosoma. 2011 Apr;120(2):109-27. doi: 10.1007/s00412-010-0304-7. Epub 2011 Jan 11. Review. Erratum in: Chromosoma. 2011 Aug;120(4):423-4.

Supplemental Content

Support Center