Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 137

1.

Cell-to-cell heterogeneity in lipid droplets suggests a mechanism to reduce lipotoxicity.

Herms A, Bosch M, Ariotti N, Reddy BJ, Fajardo A, Fernández-Vidal A, Alvarez-Guaita A, Fernández-Rojo MA, Rentero C, Tebar F, Enrich C, Geli MI, Parton RG, Gross SP, Pol A.

Curr Biol. 2013 Aug 5;23(15):1489-96. doi: 10.1016/j.cub.2013.06.032.

2.

Fat accretion in a subpopulation of hepatocytes as a strategy to protect the whole liver against oxidative stress and lipotoxicity.

Fromenty B.

Clin Res Hepatol Gastroenterol. 2013 Dec;37(6):553-5. doi: 10.1016/j.clinre.2013.08.005.

PMID:
24075194
3.

Perilipin 5, a lipid droplet-binding protein, protects heart from oxidative burden by sequestering fatty acid from excessive oxidation.

Kuramoto K, Okamura T, Yamaguchi T, Nakamura TY, Wakabayashi S, Morinaga H, Nomura M, Yanase T, Otsu K, Usuda N, Matsumura S, Inoue K, Fushiki T, Kojima Y, Hashimoto T, Sakai F, Hirose F, Osumi T.

J Biol Chem. 2012 Jul 6;287(28):23852-63. doi: 10.1074/jbc.M111.328708.

4.

Recent insights into the molecular pathophysiology of lipid droplet formation in hepatocytes.

Sahini N, Borlak J.

Prog Lipid Res. 2014 Apr;54:86-112. doi: 10.1016/j.plipres.2014.02.002. Review.

PMID:
24607340
5.

Perilipin 5 improves hepatic lipotoxicity by inhibiting lipolysis.

Wang C, Zhao Y, Gao X, Li L, Yuan Y, Liu F, Zhang L, Wu J, Hu P, Zhang X, Gu Y, Xu Y, Wang Z, Li Z, Zhang H, Ye J.

Hepatology. 2015 Mar;61(3):870-82. doi: 10.1002/hep.27409.

PMID:
25179419
6.

A theoretical study of lipid accumulation in the liver-implications for nonalcoholic fatty liver disease.

Schleicher J, Guthke R, Dahmen U, Dirsch O, Holzhuetter HG, Schuster S.

Biochim Biophys Acta. 2014 Jan;1841(1):62-9. doi: 10.1016/j.bbalip.2013.08.016.

PMID:
23999488
7.

Label-free imaging and analysis of the effects of lipolysis products on primary hepatocytes.

Schie IW, Wu J, Weeks T, Zern MA, Rutledge JC, Huser T.

J Biophotonics. 2011 Jun;4(6):425-34. doi: 10.1002/jbio.201000086.

8.

Review: biogenesis of the multifunctional lipid droplet: lipids, proteins, and sites.

Pol A, Gross SP, Parton RG.

J Cell Biol. 2014 Mar 3;204(5):635-46. doi: 10.1083/jcb.201311051. Review.

9.

Steatosis-induced proteins adducts with lipid peroxidation products and nuclear electrophilic stress in hepatocytes.

Anavi S, Ni Z, Tirosh O, Fedorova M.

Redox Biol. 2015;4:158-68. doi: 10.1016/j.redox.2014.12.009.

10.

High-throughput screening of Australian marine organism extracts for bioactive molecules affecting the cellular storage of neutral lipids.

Rae J, Fontaine F, Salim AA, Lo HP, Capon RJ, Parton RG, Martin S.

PLoS One. 2011;6(8):e22868. doi: 10.1371/journal.pone.0022868.

11.

Translocation of CIDEC in hepatocytes depends on fatty acids.

Li H, Chen A, Shu L, Yu X, Gan L, Zhou L, Yang Z.

Genes Cells. 2014 Nov;19(11):793-802. doi: 10.1111/gtc.12180.

12.

Models of lipid droplets growth and fission in adipocyte cells.

Boschi F, Rizzatti V, Zamboni M, Sbarbati A.

Exp Cell Res. 2015 Aug 15;336(2):253-62. doi: 10.1016/j.yexcr.2015.06.001.

PMID:
26121906
13.

Pathophysiology of lipid droplet proteins in liver diseases.

Carr RM, Ahima RS.

Exp Cell Res. 2016 Jan 15;340(2):187-92. doi: 10.1016/j.yexcr.2015.10.021. Review.

PMID:
26515554
14.

Autophagy regulates lipid metabolism.

Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M, Tanaka K, Cuervo AM, Czaja MJ.

Nature. 2009 Apr 30;458(7242):1131-5. doi: 10.1038/nature07976.

15.

Mitochondrial and cellular mechanisms for managing lipid excess.

Aon MA, Bhatt N, Cortassa SC.

Front Physiol. 2014 Jul 31;5:282. doi: 10.3389/fphys.2014.00282. Review.

16.

Analysis of lipid droplets in hepatocytes.

Wang H, Quiroga AD, Lehner R.

Methods Cell Biol. 2013;116:107-27. doi: 10.1016/B978-0-12-408051-5.00007-3.

PMID:
24099290
17.

Palmitate-induced activation of mitochondrial metabolism promotes oxidative stress and apoptosis in H4IIEC3 rat hepatocytes.

Egnatchik RA, Leamy AK, Noguchi Y, Shiota M, Young JD.

Metabolism. 2014 Feb;63(2):283-95. doi: 10.1016/j.metabol.2013.10.009.

18.

The N-terminal region of acyl-CoA synthetase 3 is essential for both the localization on lipid droplets and the function in fatty acid uptake.

Poppelreuther M, Rudolph B, Du C, Großmann R, Becker M, Thiele C, Ehehalt R, Füllekrug J.

J Lipid Res. 2012 May;53(5):888-900. doi: 10.1194/jlr.M024562.

19.

Specific accumulation of lipid droplets in hepatocyte nuclei of PFOA-exposed BALB/c mice.

Wang L, Wang Y, Liang Y, Li J, Liu Y, Zhang J, Zhang A, Fu J, Jiang G.

Sci Rep. 2013;3:2174. doi: 10.1038/srep02174.

20.

The role of lipid droplets in metabolic disease in rodents and humans.

Greenberg AS, Coleman RA, Kraemer FB, McManaman JL, Obin MS, Puri V, Yan QW, Miyoshi H, Mashek DG.

J Clin Invest. 2011 Jun;121(6):2102-10. doi: 10.1172/JCI46069. Review.

Items per page

Supplemental Content

Support Center