Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 92

1.

Probing local ionic dynamics in functional oxides at the nanoscale.

Strelcov E, Kim Y, Jesse S, Cao Y, Ivanov IN, Kravchenko II, Wang CH, Teng YC, Chen LQ, Chu YH, Kalinin SV.

Nano Lett. 2013 Aug 14;13(8):3455-62. doi: 10.1021/nl400780d. Epub 2013 Jul 24.

PMID:
23865960
2.

Mapping irreversible electrochemical processes on the nanoscale: ionic phenomena in li ion conductive glass ceramics.

Arruda TM, Kumar A, Kalinin SV, Jesse S.

Nano Lett. 2011 Oct 12;11(10):4161-7. doi: 10.1021/nl202039v. Epub 2011 Sep 1.

PMID:
21863801
3.

Decoupling electrochemical reaction and diffusion processes in ionically-conductive solids on the nanometer scale.

Balke N, Jesse S, Kim Y, Adamczyk L, Ivanov IN, Dudney NJ, Kalinin SV.

ACS Nano. 2010 Dec 28;4(12):7349-57. doi: 10.1021/nn101502x. Epub 2010 Nov 8.

PMID:
21058693
4.

Space- and time-resolved mapping of ionic dynamic and electroresistive phenomena in lateral devices.

Strelcov E, Jesse S, Huang YL, Teng YC, Kravchenko II, Chu YH, Kalinin SV.

ACS Nano. 2013 Aug 27;7(8):6806-15. doi: 10.1021/nn4017873. Epub 2013 Jul 15.

PMID:
23837694
5.

Correlative multimodal probing of ionically-mediated electromechanical phenomena in simple oxides.

Kim Y, Strelcov E, Hwang IR, Choi T, Park BH, Jesse S, Kalinin SV.

Sci Rep. 2013 Oct 11;3:2924. doi: 10.1038/srep02924.

6.

Direct observation of ferroelectric domain switching in varying electric field regimes using in situ TEM.

Winkler CR, Damodaran AR, Karthik J, Martin LW, Taheri ML.

Micron. 2012 Nov;43(11):1121-6. doi: 10.1016/j.micron.2012.02.009. Epub 2012 Mar 8.

PMID:
22459251
7.

First-order reversal curve probing of spatially resolved polarization switching dynamics in ferroelectric nanocapacitors.

Kim Y, Kumar A, Ovchinnikov O, Jesse S, Han H, Pantel D, Vrejoiu I, Lee W, Hesse D, Alexe M, Kalinin SV.

ACS Nano. 2012 Jan 24;6(1):491-500. doi: 10.1021/nn203831h. Epub 2011 Dec 9.

PMID:
22136402
8.

Deep data analysis of conductive phenomena on complex oxide interfaces: physics from data mining.

Strelcov E, Belianinov A, Hsieh YH, Jesse S, Baddorf AP, Chu YH, Kalinin SV.

ACS Nano. 2014 Jun 24;8(6):6449-57. doi: 10.1021/nn502029b. Epub 2014 Jun 2.

PMID:
24869675
9.

Humidity effect on nanoscale electrochemistry in solid silver ion conductors and the dual nature of its locality.

Yang SM, Strelcov E, Paranthaman MP, Tselev A, Noh TW, Kalinin SV.

Nano Lett. 2015 Feb 11;15(2):1062-9. doi: 10.1021/nl5040286. Epub 2015 Jan 9.

PMID:
25564924
10.

Nanoscale Probing of Elastic-Electronic Response to Vacancy Motion in NiO Nanocrystals.

Kurnia F, Cheung J, Cheng X, Sullaphen J, Kalinin SV, Valanoor N, Vasudevan RK.

ACS Nano. 2017 Aug 22;11(8):8387-8394. doi: 10.1021/acsnano.7b03826. Epub 2017 Aug 4.

PMID:
28742320
11.

Controlling magnetoelectric coupling by nanoscale phase transformation in strain engineered bismuth ferrite.

Liu YY, Vasudevan RK, Pan K, Xie SH, Liang WI, Kumar A, Jesse S, Chen YC, Chu YH, Nagarajan V, Kalinin SV, Li JY.

Nanoscale. 2012 May 21;4(10):3175-83. doi: 10.1039/c2nr00039c. Epub 2012 Apr 19.

PMID:
22517294
12.

Spatially-resolved mapping of history-dependent coupled electrochemical and electronical behaviors of electroresistive NiO.

Sugiyama I, Kim Y, Jesse S, Strelcov E, Kumar A, Tselev A, Rahani EK, Shenoy VB, Yamamoto T, Shibata N, Ikuhara Y, Kalinin SV.

Sci Rep. 2014 Oct 22;4:6725. doi: 10.1038/srep06725.

13.

High sensitivity piezomagnetic force microscopy for quantitative probing of magnetic materials at the nanoscale.

Chen QN, Ma F, Xie S, Liu Y, Proksch R, Li J.

Nanoscale. 2013 Jul 7;5(13):5747-51. doi: 10.1039/c3nr00770g. Epub 2013 May 29.

PMID:
23720016
14.

Nanosculpting of complex oxides by massive ionic transfer.

Seol D, Jesse S, Park SJ, Lee W, Kalinin SV, Kim Y.

Nanotechnology. 2016 Dec 16;27(50):505703. Epub 2016 Nov 18.

PMID:
27861168
15.

Nanoscale ferroelectric field-effect writing and reading using scanning tunnelling spectroscopy.

Kuffer O, Maggio-Aprile I, Fischer Ø.

Nat Mater. 2005 May;4(5):378-82. Epub 2005 Apr 17.

PMID:
15834416
16.

Probing charge screening dynamics and electrochemical processes at the solid-liquid interface with electrochemical force microscopy.

Collins L, Jesse S, Kilpatrick JI, Tselev A, Varenyk O, Okatan MB, Weber SA, Kumar A, Balke N, Kalinin SV, Rodriguez BJ.

Nat Commun. 2014 May 20;5:3871. doi: 10.1038/ncomms4871.

PMID:
24846328
17.

Probing local electromechanical effects in highly conductive electrolytes.

Balke N, Tselev A, Arruda TM, Jesse S, Chu YH, Kalinin SV.

ACS Nano. 2012 Nov 27;6(11):10139-46. doi: 10.1021/nn3038868. Epub 2012 Nov 1.

PMID:
23106854
18.

Ionically-mediated electromechanical hysteresis in transition metal oxides.

Kim Y, Morozovska AN, Kumar A, Jesse S, Eliseev EA, Alibart F, Strukov D, Kalinin SV.

ACS Nano. 2012 Aug 28;6(8):7026-33. doi: 10.1021/nn3020757. Epub 2012 Aug 2.

PMID:
22845698
19.

Constraining Data Mining with Physical Models: Voltage- and Oxygen Pressure-Dependent Transport in Multiferroic Nanostructures.

Strelcov E, Belianinov A, Hsieh YH, Chu YH, Kalinin SV.

Nano Lett. 2015 Oct 14;15(10):6650-7. doi: 10.1021/acs.nanolett.5b02472. Epub 2015 Aug 31.

PMID:
26312554
20.

Local probing of electrochemically induced negative differential resistance in TiO2 memristive materials.

Kim Y, Jang JH, Park SJ, Jesse S, Donovan L, Borisevich AY, Lee W, Kalinin SV.

Nanotechnology. 2013 Mar 1;24(8):085702. doi: 10.1088/0957-4484/24/8/085702. Epub 2013 Feb 1.

PMID:
23377014

Supplemental Content

Support Center