Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 288

1.

Molecular dynamics simulation study and molecular docking descriptors in structure-based QSAR on acetylcholinesterase (AChE) inhibitors.

Gharaghani S, Khayamian T, Ebrahimi M.

SAR QSAR Environ Res. 2013;24(9):773-94. doi: 10.1080/1062936X.2013.792877. Epub 2013 Jul 17.

PMID:
23863115
2.

3D QSAR studies of AChE inhibitors based on molecular docking scores and CoMFA.

Akula N, Lecanu L, Greeson J, Papadopoulos V.

Bioorg Med Chem Lett. 2006 Dec 15;16(24):6277-80. Epub 2006 Oct 16.

PMID:
17049234
3.

Combined 3D-QSAR, molecular docking, and molecular dynamics study of tacrine derivatives as potential acetylcholinesterase (AChE) inhibitors of Alzheimer's disease.

Zhou A, Hu J, Wang L, Zhong G, Pan J, Wu Z, Hui A.

J Mol Model. 2015 Oct;21(10):277. doi: 10.1007/s00894-015-2797-8. Epub 2015 Oct 5.

PMID:
26438408
4.

Identification of molecular descriptors for design of novel Isoalloxazine derivatives as potential Acetylcholinesterase inhibitors against Alzheimer's disease.

Gurung AB, Aguan K, Mitra S, Bhattacharjee A.

J Biomol Struct Dyn. 2017 Jun;35(8):1729-1742. doi: 10.1080/07391102.2016.1192485. Epub 2016 Jul 28.

PMID:
27410776
5.

The 3D-QSAR study of 110 diverse, dual binding, acetylcholinesterase inhibitors based on alignment independent descriptors (GRIND-2). The effects of conformation on predictive power and interpretability of the models.

Vitorović-Todorović MD, Cvijetić IN, Juranić IO, Drakulić BJ.

J Mol Graph Model. 2012 Sep;38:194-210. doi: 10.1016/j.jmgm.2012.08.001. Epub 2012 Sep 1.

PMID:
23073222
6.
7.

Acetylcholinesterase inhibitors: structure based design, synthesis, pharmacophore modeling, and virtual screening.

Valasani KR, Chaney MO, Day VW, Shidu Yan S.

J Chem Inf Model. 2013 Aug 26;53(8):2033-46. doi: 10.1021/ci400196z. Epub 2013 Aug 5.

PMID:
23777291
8.

Molecular docking and receptor-specific 3D-QSAR studies of acetylcholinesterase inhibitors.

Deb PK, Sharma A, Piplani P, Akkinepally RR.

Mol Divers. 2012 Nov;16(4):803-23. doi: 10.1007/s11030-012-9394-x. Epub 2012 Sep 21.

PMID:
22996404
9.

Design, synthesis, and evaluation of 7H-thiazolo-[3,2-b]-1,2,4-triazin-7-one derivatives as dual binding site acetylcholinesterase inhibitors.

Liu S, Shang R, Shi L, Zhou R, He J, Wan DC.

Chem Biol Drug Des. 2014 Aug;84(2):169-74. doi: 10.1111/cbdd.12362. Epub 2014 Jun 30.

PMID:
24890706
10.

Pharmacophore mapping-based virtual screening followed by molecular docking studies in search of potential acetylcholinesterase inhibitors as anti-Alzheimer's agents.

Ambure P, Kar S, Roy K.

Biosystems. 2014 Feb;116:10-20. doi: 10.1016/j.biosystems.2013.12.002. Epub 2013 Dec 8.

PMID:
24325852
11.

1,2,3,4-Tetrahydrobenzo[h][1,6]naphthyridines as a new family of potent peripheral-to-midgorge-site inhibitors of acetylcholinesterase: synthesis, pharmacological evaluation and mechanistic studies.

Di Pietro O, Viayna E, Vicente-García E, Bartolini M, Ramón R, Juárez-Jiménez J, Clos MV, Pérez B, Andrisano V, Luque FJ, Lavilla R, Muñoz-Torrero D.

Eur J Med Chem. 2014 Feb 12;73:141-52. doi: 10.1016/j.ejmech.2013.12.008. Epub 2013 Dec 18.

PMID:
24389509
12.

Oxime-dipeptides as anticholinesterase, reactivator of phosphonylated-serine of AChE catalytic triad: probing the mechanistic insight by MM-GBSA, dynamics simulations and DFT analysis.

Chadha N, Tiwari AK, Kumar V, Lal S, Milton MD, Mishra AK.

J Biomol Struct Dyn. 2015;33(5):978-90. doi: 10.1080/07391102.2014.921793. Epub 2014 May 29.

PMID:
24805972
13.

Structural modifications of 4-aryl-4-oxo-2-aminylbutanamides and their acetyl- and butyrylcholinesterase inhibitory activity. Investigation of AChE-ligand interactions by docking calculations and molecular dynamics simulations.

Vitorović-Todorović MD, Koukoulitsa C, Juranić IO, Mandić LM, Drakulić BJ.

Eur J Med Chem. 2014 Jun 23;81:158-75. doi: 10.1016/j.ejmech.2014.05.008. Epub 2014 May 4.

PMID:
24836068
14.

Design, synthesis and evaluation of flavonoid derivatives as potent AChE inhibitors.

Sheng R, Lin X, Zhang J, Chol KS, Huang W, Yang B, He Q, Hu Y.

Bioorg Med Chem. 2009 Sep 15;17(18):6692-8. doi: 10.1016/j.bmc.2009.07.072. Epub 2009 Aug 3.

PMID:
19692250
15.

Targeting acetylcholinesterase: identification of chemical leads by high throughput screening, structure determination and molecular modeling.

Berg L, Andersson CD, Artursson E, Hörnberg A, Tunemalm AK, Linusson A, Ekström F.

PLoS One. 2011;6(11):e26039. doi: 10.1371/journal.pone.0026039. Epub 2011 Nov 30.

16.

Elaborate ligand-based modeling coupled with QSAR analysis and in silico screening reveal new potent acetylcholinesterase inhibitors.

Abuhamdah S, Habash M, Taha MO.

J Comput Aided Mol Des. 2013 Dec;27(12):1075-92. doi: 10.1007/s10822-013-9699-6. Epub 2013 Dec 12.

PMID:
24338032
17.

2D-SAR and 3D-QSAR analyses for acetylcholinesterase inhibitors.

Niu B, Zhao M, Su Q, Zhang M, Lv W, Chen Q, Chen F, Chu D, Du D, Zhang Y.

Mol Divers. 2017 May;21(2):413-426. doi: 10.1007/s11030-017-9732-0. Epub 2017 Mar 9.

PMID:
28275924
18.
19.

Study of the interaction of Huperzia saururus Lycopodium alkaloids with the acetylcholinesterase enzyme.

Puiatti M, Borioni JL, Vallejo MG, Cabrera JL, Agnese AM, Ortega MG, Pierini AB.

J Mol Graph Model. 2013 Jul;44:136-44. doi: 10.1016/j.jmgm.2013.05.009. Epub 2013 Jun 11.

PMID:
23827878
20.

Molecular evaluation of herbal compounds as potent inhibitors of acetylcholinesterase for the treatment of Alzheimer's disease.

Chen YX, Li GZ, Zhang B, Xia ZY, Zhang M.

Mol Med Rep. 2016 Jul;14(1):446-52. doi: 10.3892/mmr.2016.5244. Epub 2016 May 11.

PMID:
27176468

Supplemental Content

Support Center