Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 94

1.

Tumor selective hyperthermia induced by short-wave capacitively-coupled RF electric-fields.

Raoof M, Cisneros BT, Corr SJ, Palalon F, Curley SA, Koshkina NV.

PLoS One. 2013 Jul 4;8(7):e68506. doi: 10.1371/journal.pone.0068506. Print 2013.

2.

Experimental study of a novel thermotherapy for hepatocellular carcinoma using a magnesium ferrite complex powder that produces heat under a magnetic field.

Muraoka A, Takeda S, Matsui M, Shimizu T, Tohnai I, Akiyama S, Nakao A.

Hepatogastroenterology. 2004 Nov-Dec;51(60):1662-6.

PMID:
15532799
3.

Stability of antibody-conjugated gold nanoparticles in the endolysosomal nanoenvironment: implications for noninvasive radiofrequency-based cancer therapy.

Raoof M, Corr SJ, Kaluarachchi WD, Massey KL, Briggs K, Zhu C, Cheney MA, Wilson LJ, Curley SA.

Nanomedicine. 2012 Oct;8(7):1096-105. doi: 10.1016/j.nano.2012.02.001. Epub 2012 Feb 17.

4.

Gold nanoparticles and radiofrequency in experimental models for hepatocellular carcinoma.

Raoof M, Corr SJ, Zhu C, Cisneros BT, Kaluarachchi WD, Phounsavath S, Wilson LJ, Curley SA.

Nanomedicine. 2014 Aug;10(6):1121-30. doi: 10.1016/j.nano.2014.03.004. Epub 2014 Mar 17.

6.

[Nanoparticle-mediated endostatin gene therapy targeting hepatocellular carcinoma utilizing heat-inducible promoter].

Zhou JJ, Chen RF, Li ZH, Zhou QB, Tang QB, He XY, Lu HW, Guo N.

Zhonghua Yi Xue Za Zhi. 2009 Mar 31;89(12):795-9. Chinese.

PMID:
19595115
7.

Nanoparticle-mediated radiofrequency capacitive hyperthermia: A phantom study with magnetic resonance thermometry.

Kim KS, Lee SY.

Int J Hyperthermia. 2015;31(8):831-9. doi: 10.3109/02656736.2015.1096968. Epub 2015 Nov 10.

PMID:
26555005
8.

Anticancer effect and feasibility study of hyperthermia treatment of pancreatic cancer using magnetic nanoparticles.

Wang L, Dong J, Ouyang W, Wang X, Tang J.

Oncol Rep. 2012 Mar;27(3):719-26. doi: 10.3892/or.2011.1567. Epub 2011 Nov 30.

PMID:
22134718
9.

Radio frequency radiation-induced hyperthermia using Si nanoparticle-based sensitizers for mild cancer therapy.

Tamarov KP, Osminkina LA, Zinovyev SV, Maximova KA, Kargina JV, Gongalsky MB, Ryabchikov Y, Al-Kattan A, Sviridov AP, Sentis M, Ivanov AV, Nikiforov VN, Kabashin AV, Timoshenko VY.

Sci Rep. 2014 Nov 13;4:7034. doi: 10.1038/srep07034.

10.

Cell-delivered magnetic nanoparticles caused hyperthermia-mediated increased survival in a murine pancreatic cancer model.

Basel MT, Balivada S, Wang H, Shrestha TB, Seo GM, Pyle M, Abayaweera G, Dani R, Koper OB, Tamura M, Chikan V, Bossmann SH, Troyer DL.

Int J Nanomedicine. 2012;7:297-306. doi: 10.2147/IJN.S28344. Epub 2012 Jan 18.

11.

A multiple RF heating system for experimental hyperthermia in small animals.

Vojnovic B, Joiner MC.

Int J Hyperthermia. 1985 Jul-Sep;1(3):287-98.

PMID:
3836274
12.

Design and evaluation of a hybrid radiofrequency applicator for magnetic resonance imaging and RF induced hyperthermia: electromagnetic field simulations up to 14.0 Tesla and proof-of-concept at 7.0 Tesla.

Winter L, Özerdem C, Hoffmann W, Santoro D, Müller A, Waiczies H, Seemann R, Graessl A, Wust P, Niendorf T.

PLoS One. 2013 Apr 22;8(4):e61661. doi: 10.1371/journal.pone.0061661. Print 2013.

13.

A radio-frequency coupling network for heating of citrate-coated gold nanoparticles for cancer therapy: design and analysis.

Kruse DE, Stephens DN, Lindfors HA, Ingham ES, Paoli EE, Ferrara KW.

IEEE Trans Biomed Eng. 2011 Jul;58(7):2002-12. doi: 10.1109/TBME.2011.2124460. Epub 2011 Mar 10.

14.

Electric-field distribution near rectangular microstrip radiators for hyperthermia heating: theory versus experiment in water.

Underwood HR, Peterson AF, Magin RL.

IEEE Trans Biomed Eng. 1992 Feb;39(2):146-53.

PMID:
1612617
15.

Noninvasive radiofrequency field destruction of pancreatic adenocarcinoma xenografts treated with targeted gold nanoparticles.

Glazer ES, Zhu C, Massey KL, Thompson CS, Kaluarachchi WD, Hamir AN, Curley SA.

Clin Cancer Res. 2010 Dec 1;16(23):5712-21. doi: 10.1158/1078-0432.CCR-10-2055.

16.

Complete tumor response following intratumoral 32P BioSilicon on human hepatocellular and pancreatic carcinoma xenografts in nude mice.

Zhang K, Loong SL, Connor S, Yu SW, Tan SY, Ng RT, Lee KM, Canham L, Chow PK.

Clin Cancer Res. 2005 Oct 15;11(20):7532-7.

17.

Prospects for radiofrequency hyperthermia applicator research. I--Pre-optimised prototypes of endocavitary applicators with matching interfaces for prostate hyperplasia and cancer treatments.

Franconi C, Vrba J, Micali F, Pesce F.

Int J Hyperthermia. 2011;27(2):187-98. doi: 10.3109/02656736.2010.521886. Epub 2011 Jan 20.

PMID:
21250898
18.

Experimental validation of hyperthermia SAR treatment planning using MR B1+ imaging.

Van den Berg CA, Bartels LW, De Leeuw AA, Lagendijk JJ, Van de Kamer JB.

Phys Med Biol. 2004 Nov 21;49(22):5029-42.

PMID:
15609556
19.

[Effect of interventional chemothermotherapy on vascular permeability of tumor liver tissue and normal liver tissue in VX-2 tumor-bearing rabbits].

Liu Y, Zhang HX, Cao XM, Liu YY, Li WX, Ni DH, Cao W.

Ai Zheng. 2002 Sep;21(9):954-6. Chinese.

PMID:
12508540
20.

In vitro exposure to 0.57-MHz electric currents exerts cytostatic effects in HepG2 human hepatocarcinoma cells.

Hernández-Bule ML, Trillo MA, Cid MA, Leal J, Ubeda A.

Int J Oncol. 2007 Mar;30(3):583-92.

PMID:
17273759

Supplemental Content

Support Center