Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 134

1.

Induction of human cardiomyocyte-like cells from fibroblasts by defined factors.

Wada R, Muraoka N, Inagawa K, Yamakawa H, Miyamoto K, Sadahiro T, Umei T, Kaneda R, Suzuki T, Kamiya K, Tohyama S, Yuasa S, Kokaji K, Aeba R, Yozu R, Yamagishi H, Kitamura T, Fukuda K, Ieda M.

Proc Natl Acad Sci U S A. 2013 Jul 30;110(31):12667-72. doi: 10.1073/pnas.1304053110. Epub 2013 Jul 16.

2.

MiR-133 promotes cardiac reprogramming by directly repressing Snai1 and silencing fibroblast signatures.

Muraoka N, Yamakawa H, Miyamoto K, Sadahiro T, Umei T, Isomi M, Nakashima H, Akiyama M, Wada R, Inagawa K, Nishiyama T, Kaneda R, Fukuda T, Takeda S, Tohyama S, Hashimoto H, Kawamura Y, Goshima N, Aeba R, Yamagishi H, Fukuda K, Ieda M.

EMBO J. 2014 Jul 17;33(14):1565-81. doi: 10.15252/embj.201387605. Epub 2014 Jun 11.

3.

Optimization of direct fibroblast reprogramming to cardiomyocytes using calcium activity as a functional measure of success.

Addis RC, Ifkovits JL, Pinto F, Kellam LD, Esteso P, Rentschler S, Christoforou N, Epstein JA, Gearhart JD.

J Mol Cell Cardiol. 2013 Jul;60:97-106. doi: 10.1016/j.yjmcc.2013.04.004. Epub 2013 Apr 13.

4.

In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes.

Qian L, Huang Y, Spencer CI, Foley A, Vedantham V, Liu L, Conway SJ, Fu JD, Srivastava D.

Nature. 2012 May 31;485(7400):593-8. doi: 10.1038/nature11044.

5.

Transcription factors MYOCD, SRF, Mesp1 and SMARCD3 enhance the cardio-inducing effect of GATA4, TBX5, and MEF2C during direct cellular reprogramming.

Christoforou N, Chellappan M, Adler AF, Kirkton RD, Wu T, Addis RC, Bursac N, Leong KW.

PLoS One. 2013 May 21;8(5):e63577. doi: 10.1371/journal.pone.0063577. Print 2013.

6.

Induction of cardiomyocyte-like cells in infarct hearts by gene transfer of Gata4, Mef2c, and Tbx5.

Inagawa K, Miyamoto K, Yamakawa H, Muraoka N, Sadahiro T, Umei T, Wada R, Katsumata Y, Kaneda R, Nakade K, Kurihara C, Obata Y, Miyake K, Fukuda K, Ieda M.

Circ Res. 2012 Oct 12;111(9):1147-56. doi: 10.1161/CIRCRESAHA.112.271148. Epub 2012 Aug 28.

7.

Direct reprogramming of human fibroblasts toward a cardiomyocyte-like state.

Fu JD, Stone NR, Liu L, Spencer CI, Qian L, Hayashi Y, Delgado-Olguin P, Ding S, Bruneau BG, Srivastava D.

Stem Cell Reports. 2013 Aug 22;1(3):235-47. doi: 10.1016/j.stemcr.2013.07.005. eCollection 2013.

8.

A new approach to transcription factor screening for reprogramming of fibroblasts to cardiomyocyte-like cells.

Protze S, Khattak S, Poulet C, Lindemann D, Tanaka EM, Ravens U.

J Mol Cell Cardiol. 2012 Sep;53(3):323-32. doi: 10.1016/j.yjmcc.2012.04.010. Epub 2012 Apr 28.

PMID:
22575762
9.

Discovery and progress of direct cardiac reprogramming.

Kojima H, Ieda M.

Cell Mol Life Sci. 2017 Jun;74(12):2203-2215. doi: 10.1007/s00018-017-2466-4. Epub 2017 Feb 14. Review.

PMID:
28197667
10.

MiR-590 Promotes Transdifferentiation of Porcine and Human Fibroblasts Toward a Cardiomyocyte-Like Fate by Directly Repressing Specificity Protein 1.

Singh VP, Mathison M, Patel V, Sanagasetti D, Gibson BW, Yang J, Rosengart TK.

J Am Heart Assoc. 2016 Nov 10;5(11). pii: e003922.

11.

Chemical Enhancement of In Vitro and In Vivo Direct Cardiac Reprogramming.

Mohamed TM, Stone NR, Berry EC, Radzinsky E, Huang Y, Pratt K, Ang YS, Yu P, Wang H, Tang S, Magnitsky S, Ding S, Ivey KN, Srivastava D.

Circulation. 2017 Mar 7;135(10):978-995. doi: 10.1161/CIRCULATIONAHA.116.024692. Epub 2016 Nov 10.

12.

Reprogramming of mouse fibroblasts into cardiomyocyte-like cells in vitro.

Qian L, Berry EC, Fu JD, Ieda M, Srivastava D.

Nat Protoc. 2013 Jun;8(6):1204-15. doi: 10.1038/nprot.2013.067. Epub 2013 May 30.

PMID:
23722259
13.

Peptide-enhanced mRNA transfection in cultured mouse cardiac fibroblasts and direct reprogramming towards cardiomyocyte-like cells.

Lee K, Yu P, Lingampalli N, Kim HJ, Tang R, Murthy N.

Int J Nanomedicine. 2015 Mar 6;10:1841-54. doi: 10.2147/IJN.S75124. eCollection 2015.

14.

Inefficient reprogramming of fibroblasts into cardiomyocytes using Gata4, Mef2c, and Tbx5.

Chen JX, Krane M, Deutsch MA, Wang L, Rav-Acha M, Gregoire S, Engels MC, Rajarajan K, Karra R, Abel ED, Wu JC, Milan D, Wu SM.

Circ Res. 2012 Jun 22;111(1):50-5. doi: 10.1161/CIRCRESAHA.112.270264. Epub 2012 May 10.

15.

Fibroblast Growth Factors and Vascular Endothelial Growth Factor Promote Cardiac Reprogramming under Defined Conditions.

Yamakawa H, Muraoka N, Miyamoto K, Sadahiro T, Isomi M, Haginiwa S, Kojima H, Umei T, Akiyama M, Kuishi Y, Kurokawa J, Furukawa T, Fukuda K, Ieda M.

Stem Cell Reports. 2015 Dec 8;5(6):1128-1142. doi: 10.1016/j.stemcr.2015.10.019. Epub 2015 Nov 25.

16.

Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors.

Ieda M, Fu JD, Delgado-Olguin P, Vedantham V, Hayashi Y, Bruneau BG, Srivastava D.

Cell. 2010 Aug 6;142(3):375-86. doi: 10.1016/j.cell.2010.07.002.

17.

Forward Programming of Cardiac Stem Cells by Homogeneous Transduction with MYOCD plus TBX5.

Belian E, Noseda M, Abreu Paiva MS, Leja T, Sampson R, Schneider MD.

PLoS One. 2015 Jun 5;10(6):e0125384. doi: 10.1371/journal.pone.0125384. eCollection 2015.

18.

Cardiac gene activation analysis in mammalian non-myoblasic cells by Nkx2-5, Tbx5, Gata4 and Myocd.

Zhou L, Liu Y, Lu L, Lu X, Dixon RA.

PLoS One. 2012;7(10):e48028. doi: 10.1371/journal.pone.0048028. Epub 2012 Oct 29.

19.

Direct In Vivo Reprogramming with Sendai Virus Vectors Improves Cardiac Function after Myocardial Infarction.

Miyamoto K, Akiyama M, Tamura F, Isomi M, Yamakawa H, Sadahiro T, Muraoka N, Kojima H, Haginiwa S, Kurotsu S, Tani H, Wang L, Qian L, Inoue M, Ide Y, Kurokawa J, Yamamoto T, Seki T, Aeba R, Yamagishi H, Fukuda K, Ieda M.

Cell Stem Cell. 2018 Jan 4;22(1):91-103.e5. doi: 10.1016/j.stem.2017.11.010. Epub 2017 Dec 21.

PMID:
29276141
20.

Akt1/protein kinase B enhances transcriptional reprogramming of fibroblasts to functional cardiomyocytes.

Zhou H, Dickson ME, Kim MS, Bassel-Duby R, Olson EN.

Proc Natl Acad Sci U S A. 2015 Sep 22;112(38):11864-9. doi: 10.1073/pnas.1516237112. Epub 2015 Sep 9.

Supplemental Content

Support Center