Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 101

1.

An intronic structure enabled by a long-distance interaction serves as a novel target for splicing correction in spinal muscular atrophy.

Singh NN, Lawler MN, Ottesen EW, Upreti D, Kaczynski JR, Singh RN.

Nucleic Acids Res. 2013 Sep;41(17):8144-65. doi: 10.1093/nar/gkt609.

2.

Splicing regulation in spinal muscular atrophy by an RNA structure formed by long-distance interactions.

Singh NN, Lee BM, Singh RN.

Ann N Y Acad Sci. 2015 Apr;1341:176-87. doi: 10.1111/nyas.12727.

3.
4.

Antisense masking of an hnRNP A1/A2 intronic splicing silencer corrects SMN2 splicing in transgenic mice.

Hua Y, Vickers TA, Okunola HL, Bennett CF, Krainer AR.

Am J Hum Genet. 2008 Apr;82(4):834-48. doi: 10.1016/j.ajhg.2008.01.014.

5.

Evolving concepts on human SMN pre-mRNA splicing.

Singh RN.

RNA Biol. 2007 Jan-Mar;4(1):7-10.

PMID:
17592254
6.

Determinants of exon 7 splicing in the spinal muscular atrophy genes, SMN1 and SMN2.

Cartegni L, Hastings ML, Calarco JA, de Stanchina E, Krainer AR.

Am J Hum Genet. 2006 Jan;78(1):63-77.

7.

The splicing regulator Sam68 binds to a novel exonic splicing silencer and functions in SMN2 alternative splicing in spinal muscular atrophy.

Pedrotti S, Bielli P, Paronetto MP, Ciccosanti F, Fimia GM, Stamm S, Manley JL, Sette C.

EMBO J. 2010 Apr 7;29(7):1235-47. doi: 10.1038/emboj.2010.19.

9.
10.

A multi-exon-skipping detection assay reveals surprising diversity of splice isoforms of spinal muscular atrophy genes.

Singh NN, Seo J, Rahn SJ, Singh RN.

PLoS One. 2012;7(11):e49595. doi: 10.1371/journal.pone.0049595.

11.
12.

Alternative splicing in spinal muscular atrophy underscores the role of an intron definition model.

Singh NN, Singh RN.

RNA Biol. 2011 Jul-Aug;8(4):600-6. doi: 10.4161/rna.8.4.16224.

13.

A negative element in SMN2 exon 7 inhibits splicing in spinal muscular atrophy.

Kashima T, Manley JL.

Nat Genet. 2003 Aug;34(4):460-3.

PMID:
12833158
14.

TIA1 prevents skipping of a critical exon associated with spinal muscular atrophy.

Singh NN, Seo J, Ottesen EW, Shishimorova M, Bhattacharya D, Singh RN.

Mol Cell Biol. 2011 Mar;31(5):935-54. doi: 10.1128/MCB.00945-10.

15.

An antisense microwalk reveals critical role of an intronic position linked to a unique long-distance interaction in pre-mRNA splicing.

Singh NN, Hollinger K, Bhattacharya D, Singh RN.

RNA. 2010 Jun;16(6):1167-81. doi: 10.1261/rna.2154310.

16.

Delivery of bifunctional RNAs that target an intronic repressor and increase SMN levels in an animal model of spinal muscular atrophy.

Baughan TD, Dickson A, Osman EY, Lorson CL.

Hum Mol Genet. 2009 May 1;18(9):1600-11. doi: 10.1093/hmg/ddp076.

17.

hnRNP A1 functions with specificity in repression of SMN2 exon 7 splicing.

Kashima T, Rao N, David CJ, Manley JL.

Hum Mol Genet. 2007 Dec 15;16(24):3149-59.

18.

An intronic element contributes to splicing repression in spinal muscular atrophy.

Kashima T, Rao N, Manley JL.

Proc Natl Acad Sci U S A. 2007 Feb 27;104(9):3426-31.

19.

An extended inhibitory context causes skipping of exon 7 of SMN2 in spinal muscular atrophy.

Singh NN, Androphy EJ, Singh RN.

Biochem Biophys Res Commun. 2004 Mar 5;315(2):381-8.

PMID:
14766219
20.
Items per page

Supplemental Content

Support Center