Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 113

1.

Multichannel bipotentiostat integrated with a microfluidic platform for electrochemical real-time monitoring of cell cultures.

Vergani M, Carminati M, Ferrari G, Landini E, Caviglia C, Heiskanen A, Comminges C, Zór K, Sabourin D, Dufva M, Dimaki M, Raiteri R, Wollenberger U, Emneus J, Sampietro M.

IEEE Trans Biomed Circuits Syst. 2012 Oct;6(5):498-507. doi: 10.1109/TBCAS.2012.2187783.

PMID:
23853236
2.

Integrated microdevice for long-term automated perfusion culture without shear stress and real-time electrochemical monitoring of cells.

Li LM, Wang W, Zhang SH, Chen SJ, Guo SS, Français O, Cheng JK, Huang WH.

Anal Chem. 2011 Dec 15;83(24):9524-30. doi: 10.1021/ac202302t. Epub 2011 Nov 29.

PMID:
22087849
3.

Novel membrane-based electrochemical sensor for real-time bio-applications.

Alatraktchi FA, Bakmand T, Dimaki M, Svendsen WE.

Sensors (Basel). 2014 Nov 24;14(11):22128-39. doi: 10.3390/s141122128.

4.

Attofarad resolution potentiostat for electrochemical measurements on nanoscale biomolecular interfacial systems.

Carminati M, Ferrari G, Sampietro M.

Rev Sci Instrum. 2009 Dec;80(12):124701. doi: 10.1063/1.3245343.

PMID:
20059158
5.

Microfluidic chip integrated with flexible PDMS-based electrochemical cytosensor for dynamic analysis of drug-induced apoptosis on HeLa cells.

Cao JT, Zhu YD, Rana RK, Zhu JJ.

Biosens Bioelectron. 2014 Jan 15;51:97-102. doi: 10.1016/j.bios.2013.07.025. Epub 2013 Jul 19.

PMID:
23942358
6.

Poly(dimethylsiloxane) cross-linked carbon paste electrodes for microfluidic electrochemical sensing.

Sameenoi Y, Mensack MM, Boonsong K, Ewing R, Dungchai W, Chailapakul O, Cropek DM, Henry CS.

Analyst. 2011 Aug 7;136(15):3177-84. doi: 10.1039/c1an15335h. Epub 2011 Jun 22.

PMID:
21698305
7.

Interdigitated microelectrode-based microchip for electrical impedance spectroscopic study of oral cancer cells.

Mamouni J, Yang L.

Biomed Microdevices. 2011 Dec;13(6):1075-88. doi: 10.1007/s10544-011-9577-8.

PMID:
21833766
8.

High-sensitivity electrochemical enzyme-linked assay on a microfluidic interdigitated microelectrode.

Chen IJ, White IM.

Biosens Bioelectron. 2011 Jul 15;26(11):4375-81. doi: 10.1016/j.bios.2011.04.044. Epub 2011 May 6.

9.

Monitoring of dopamine release in single cell using ultrasensitive ITO microsensors modified with carbon nanotubes.

Shi BX, Wang Y, Zhang K, Lam TL, Chan HL.

Biosens Bioelectron. 2011 Feb 15;26(6):2917-21. doi: 10.1016/j.bios.2010.11.037. Epub 2010 Dec 1.

PMID:
21185713
10.

Dielectric spectroscopy as a viable biosensing tool for cell and tissue characterization and analysis.

Heileman K, Daoud J, Tabrizian M.

Biosens Bioelectron. 2013 Nov 15;49:348-59. doi: 10.1016/j.bios.2013.04.017. Epub 2013 May 15. Review.

PMID:
23796534
11.

Real-time processing of fast-scan cyclic voltammetry (FSCV) data using a field-programmable gate array (FPGA).

Bozorgzadeh B, Covey DP, Heidenreich BA, Garris PA, Mohseni P.

Conf Proc IEEE Eng Med Biol Soc. 2014;2014:2036-9. doi: 10.1109/EMBC.2014.6944016.

PMID:
25570384
12.

Real-time and non-invasive impedimetric monitoring of cell proliferation and chemosensitivity in a perfusion 3D cell culture microfluidic chip.

Lei KF, Wu MH, Hsu CW, Chen YD.

Biosens Bioelectron. 2014 Jan 15;51:16-21. doi: 10.1016/j.bios.2013.07.031. Epub 2013 Jul 20.

PMID:
23920091
13.

Smart portable electrophoresis instrument based on multipurpose microfluidic chips with electrochemical detection.

Fernández-la-Villa A, Sánchez-Barragán D, Pozo-Ayuso DF, Castaño-Álvarez M.

Electrophoresis. 2012 Sep;33(17):2733-42. doi: 10.1002/elps.201200236.

PMID:
22965719
14.

A compact microelectrode array chip with multiple measuring sites for electrochemical applications.

Dimaki M, Vergani M, Heiskanen A, Kwasny D, Sasso L, Carminati M, Gerrard JA, Emneus J, Svendsen WE.

Sensors (Basel). 2014 May 28;14(6):9505-21. doi: 10.3390/s140609505.

15.

Integrated microfluidic platform for the electrochemical detection of breast cancer markers in patient serum samples.

Fragoso A, Latta D, Laboria N, von Germar F, Hansen-Hagge TE, Kemmner W, Gärtner C, Klemm R, Drese KS, O'Sullivan CK.

Lab Chip. 2011 Feb 21;11(4):625-31. doi: 10.1039/c0lc00398k. Epub 2010 Dec 1.

PMID:
21120243
16.

16-channel CMOS impedance spectroscopy DNA analyzer with dual-slope multiplying ADCs.

Mazhab-Jafari H, Soleymani L, Genov R.

IEEE Trans Biomed Circuits Syst. 2012 Oct;6(5):468-78. doi: 10.1109/TBCAS.2012.2226334.

PMID:
23853233
17.

Functionalized-graphene modified graphite electrode for the selective determination of dopamine in presence of uric acid and ascorbic acid.

Mallesha M, Manjunatha R, Nethravathi C, Suresh GS, Rajamathi M, Melo JS, Venkatesha TV.

Bioelectrochemistry. 2011 Jun;81(2):104-8. doi: 10.1016/j.bioelechem.2011.03.004. Epub 2011 Mar 22.

PMID:
21497563
18.

Compact microelectrode array system: tool for in situ monitoring of drug effects on neurotransmitter release from neural cells.

Chen Y, Guo C, Lim L, Cheong S, Zhang Q, Tang K, Reboud J.

Anal Chem. 2008 Feb 15;80(4):1133-40. doi: 10.1021/ac071182j.

PMID:
18271508
19.

FPGA implementation of principal component regression (PCR) for real-time differentiation of dopamine from interferents.

Bozorgzadeh B, Covey DP, Garris PA, Mohseni P.

Conf Proc IEEE Eng Med Biol Soc. 2015;2015:5151-4. doi: 10.1109/EMBC.2015.7319551.

PMID:
26737451
20.

Spatially resolved electrochemical sensing of chemical gradients.

Mensack MM, Wydallis JB, Lynn NS Jr, Dandy DS, Henry CS.

Lab Chip. 2013 Jan 21;13(2):208-11. doi: 10.1039/c2lc41054k. Epub 2012 Nov 21.

PMID:
23172274

Supplemental Content

Support Center