Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 78

1.

Crystal structure of conjugated polyketone reductase (CPR-C1) from Candida parapsilosis IFO 0708 complexed with NADPH.

Qin HM, Yamamura A, Miyakawa T, Kataoka M, Maruoka S, Ohtsuka J, Nagata K, Shimizu S, Tanokura M.

Proteins. 2013 Nov;81(11):2059-63. doi: 10.1002/prot.24363. Epub 2013 Aug 23.

PMID:
23852710
2.

Structure of conjugated polyketone reductase from Candida parapsilosis IFO 0708 reveals conformational changes for substrate recognition upon NADPH binding.

Qin HM, Yamamura A, Miyakawa T, Kataoka M, Nagai T, Kitamura N, Urano N, Maruoka S, Ohtsuka J, Nagata K, Shimizu S, Tanokura M.

Appl Microbiol Biotechnol. 2014 Jan;98(1):243-9. doi: 10.1007/s00253-013-5073-9. Epub 2013 Jul 5.

PMID:
23828603
3.

Expression, purification, crystallization and preliminary X-ray analysis of conjugated polyketone reductase C2 (CPR-C2) from Candida parapsilosis IFO 0708.

Yamamura A, Maruoka S, Ohtsuka J, Miyakawa T, Nagata K, Kataoka M, Kitamura N, Shimizu S, Tanokura M.

Acta Crystallogr Sect F Struct Biol Cryst Commun. 2009 Nov 1;65(Pt 11):1145-8. doi: 10.1107/S1744309109038238. Epub 2009 Oct 30.

4.

Gene cloning and overexpression of two conjugated polyketone reductases, novel aldo-keto reductase family enzymes, of Candida parapsilosis.

Kataoka M, Delacruz-Hidalgo AR, Akond MA, Sakuradani E, Kita K, Shimizu S.

Appl Microbiol Biotechnol. 2004 Apr;64(3):359-66. Epub 2003 Oct 31.

PMID:
14593510
5.

Ketopantoyl-lactone reductase from Candida parapsilosis: purification and characterization as a conjugated polyketone reductase.

Hata H, Shimizu S, Hattori S, Yamada H.

Biochim Biophys Acta. 1989 Feb 24;990(2):175-81.

PMID:
2644973
6.

Isolation and primary structural analysis of two conjugated polyketone reductases from Candida parapsilosis.

Hidalgo AR, Akond MA, Kita K, Kataoka M, Shimizu S.

Biosci Biotechnol Biochem. 2001 Dec;65(12):2785-8.

7.

Identification, characterization, and crystal structure of an aldo-keto reductase (AKR2E4) from the silkworm Bombyx mori.

Yamamoto K, Wilson DK.

Arch Biochem Biophys. 2013 Oct 15;538(2):156-63. doi: 10.1016/j.abb.2013.08.018. Epub 2013 Sep 6. Erratum in: Arch Biochem Biophys. 2014 Nov 15;562:124.

PMID:
24012638
9.
10.

The structure of apo and holo forms of xylose reductase, a dimeric aldo-keto reductase from Candida tenuis.

Kavanagh KL, Klimacek M, Nidetzky B, Wilson DK.

Biochemistry. 2002 Jul 16;41(28):8785-95.

PMID:
12102621
11.

Crystal structure of a carbonyl reductase from Candida parapsilosis with anti-Prelog stereospecificity.

Zhang R, Zhu G, Zhang W, Cao S, Ou X, Li X, Bartlam M, Xu Y, Zhang XC, Rao Z.

Protein Sci. 2008 Aug;17(8):1412-23. doi: 10.1110/ps.035089.108. Epub 2008 Jun 19.

12.

Crystal structure of CHO reductase, a member of the aldo-keto reductase superfamily.

Ye Q, Hyndman D, Li X, Flynn TG, Jia Z.

Proteins. 2000 Jan 1;38(1):41-8.

PMID:
10651037
14.

Crystal structure and comparative functional analyses of a Mycobacterium aldo-keto reductase.

Scoble J, McAlister AD, Fulton Z, Troy S, Byres E, Vivian JP, Brammananth R, Wilce MC, Le Nours J, Zaker-Tabrizi L, Coppel RL, Crellin PK, Rossjohn J, Beddoe T.

J Mol Biol. 2010 Apr 23;398(1):26-39. doi: 10.1016/j.jmb.2010.02.021. Epub 2010 Feb 25.

PMID:
20188740
15.

The coenzyme specificity of Candida tenuis xylose reductase (AKR2B5) explored by site-directed mutagenesis and X-ray crystallography.

Petschacher B, Leitgeb S, Kavanagh KL, Wilson DK, Nidetzky B.

Biochem J. 2005 Jan 1;385(Pt 1):75-83.

16.
17.

Structure of porcine aldehyde reductase holoenzyme.

el-Kabbani O, Judge K, Ginell SL, Myles DA, DeLucas LJ, Flynn TG.

Nat Struct Biol. 1995 Aug;2(8):687-92.

PMID:
7552731
18.

Mouse 17alpha-hydroxysteroid dehydrogenase (AKR1C21) binds steroids differently from other aldo-keto reductases: identification and characterization of amino acid residues critical for substrate binding.

Faucher F, Cantin L, Pereira de J├ęsus-Tran K, Lemieux M, Luu-The V, Labrie F, Breton R.

J Mol Biol. 2007 Jun 1;369(2):525-40. Epub 2007 Mar 27.

PMID:
17442338
20.

The three-dimensional structure of AKR11B4, a glycerol dehydrogenase from Gluconobacter oxydans, reveals a tryptophan residue as an accelerator of reaction turnover.

Richter N, Breicha K, Hummel W, Niefind K.

J Mol Biol. 2010 Dec 3;404(3):353-62. doi: 10.1016/j.jmb.2010.09.049. Epub 2010 Sep 29.

PMID:
20887732

Supplemental Content

Support Center