Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 78

1.

In vivo acute and humoral response to three-dimensional porous soy protein scaffolds.

Chien KB, Aguado BA, Bryce PJ, Shah RN.

Acta Biomater. 2013 Nov;9(11):8983-90. doi: 10.1016/j.actbio.2013.07.005. Epub 2013 Jul 12.

PMID:
23851173
2.

In vivo biocompatibility and biodegradation of 3D-printed porous scaffolds based on a hydroxyl-functionalized poly(ε-caprolactone).

Seyednejad H, Gawlitta D, Kuiper RV, de Bruin A, van Nostrum CF, Vermonden T, Dhert WJ, Hennink WE.

Biomaterials. 2012 Jun;33(17):4309-18. doi: 10.1016/j.biomaterials.2012.03.002. Epub 2012 Mar 20.

PMID:
22436798
3.

Microstructure and in vitro cellular response to novel soy protein-based porous structures for tissue regeneration applications.

Olami H, Zilberman M.

J Biomater Appl. 2016 Feb;30(7):1004-15. doi: 10.1177/0885328215614713. Epub 2015 Nov 1.

PMID:
26526932
4.

Evaluation of the effect of the degree of acetylation on the inflammatory response to 3D porous chitosan scaffolds.

Barbosa JN, Amaral IF, Aguas AP, Barbosa MA.

J Biomed Mater Res A. 2010 Apr;93(1):20-8. doi: 10.1002/jbm.a.32499.

PMID:
19484769
5.

Three-dimensional printing of soy protein scaffolds for tissue regeneration.

Chien KB, Makridakis E, Shah RN.

Tissue Eng Part C Methods. 2013 Jun;19(6):417-26. doi: 10.1089/ten.TEC.2012.0383. Epub 2012 Dec 6.

PMID:
23102234
6.

Novel soy protein scaffolds for tissue regeneration: Material characterization and interaction with human mesenchymal stem cells.

Chien KB, Shah RN.

Acta Biomater. 2012 Feb;8(2):694-703. doi: 10.1016/j.actbio.2011.09.036. Epub 2011 Oct 11.

PMID:
22019761
7.

Tissue regeneration in vivo within recombinant spidroin 1 scaffolds.

Moisenovich MM, Pustovalova O, Shackelford J, Vasiljeva TV, Druzhinina TV, Kamenchuk YA, Guzeev VV, Sokolova OS, Bogush VG, Debabov VG, Kirpichnikov MP, Agapov II.

Biomaterials. 2012 May;33(15):3887-98. doi: 10.1016/j.biomaterials.2012.02.013. Epub 2012 Feb 23.

PMID:
22364702
8.

[Primary study on histocompatibility of three kinds of collagen-chitosan porous scaffolds].

Hu X, Han C, Shi H, Ma L, Gao C.

Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2005 Oct;19(10):826-30. Chinese.

PMID:
16274135
9.

Human-like collagen/hyaluronic acid 3D scaffolds for vascular tissue engineering.

Zhu C, Fan D, Wang Y.

Mater Sci Eng C Mater Biol Appl. 2014 Jan 1;34:393-401. doi: 10.1016/j.msec.2013.09.044. Epub 2013 Oct 6.

PMID:
24268274
11.

Fabrication of porous polysaccharide-based scaffolds using a combined freeze-drying/cross-linking process.

Autissier A, Le Visage C, Pouzet C, Chaubet F, Letourneur D.

Acta Biomater. 2010 Sep;6(9):3640-8. doi: 10.1016/j.actbio.2010.03.004. Epub 2010 Mar 6.

PMID:
20215057
12.

Evaluation of egg white ovomucin-based porous scaffold as an implantable biomaterial for tissue engineering.

Carpena NT, Abueva CDG, Padalhin AR, Lee BT.

J Biomed Mater Res B Appl Biomater. 2017 Oct;105(7):2107-2117. doi: 10.1002/jbm.b.33750. Epub 2016 Jul 13.

PMID:
27405539
13.

Tailoring the porosity and pore size of electrospun synthetic human elastin scaffolds for dermal tissue engineering.

Rnjak-Kovacina J, Wise SG, Li Z, Maitz PK, Young CJ, Wang Y, Weiss AS.

Biomaterials. 2011 Oct;32(28):6729-36. doi: 10.1016/j.biomaterials.2011.05.065. Epub 2011 Jun 17.

PMID:
21683438
14.

Structural determinants of hydration, mechanics and fluid flow in freeze-dried collagen scaffolds.

Offeddu GS, Ashworth JC, Cameron RE, Oyen ML.

Acta Biomater. 2016 Sep 1;41:193-203. doi: 10.1016/j.actbio.2016.05.024. Epub 2016 May 30.

15.

Preparation and characterization of aloe vera blended collagen-chitosan composite scaffold for tissue engineering applications.

Jithendra P, Rajam AM, Kalaivani T, Mandal AB, Rose C.

ACS Appl Mater Interfaces. 2013 Aug 14;5(15):7291-8. doi: 10.1021/am401637c. Epub 2013 Jul 22.

PMID:
23838342
16.

Comparative study of bovine, porcine and avian collagens for the production of a tissue engineered dermis.

Parenteau-Bareil R, Gauvin R, Cliche S, Gariépy C, Germain L, Berthod F.

Acta Biomater. 2011 Oct;7(10):3757-65. doi: 10.1016/j.actbio.2011.06.020. Epub 2011 Jun 17.

PMID:
21723967
17.

In vivo biocompatibility and biodegradation of a novel thin and mechanically stable collagen scaffold.

Rahmanian-Schwarz A, Held M, Knoeller T, Stachon S, Schmidt T, Schaller HE, Just L.

J Biomed Mater Res A. 2014 Apr;102(4):1173-9. doi: 10.1002/jbm.a.34793. Epub 2013 Aug 8.

PMID:
23666868
18.

Biodegradation and in vivo biocompatibility of a degradable, polar/hydrophobic/ionic polyurethane for tissue engineering applications.

McBane JE, Sharifpoor S, Cai K, Labow RS, Santerre JP.

Biomaterials. 2011 Sep;32(26):6034-44. doi: 10.1016/j.biomaterials.2011.04.048. Epub 2011 Jun 8.

PMID:
21641638
19.

Porous scaffolds based on cross-linking of poly(L-glutamic acid).

Cao B, Yin J, Yan S, Cui L, Chen X, Xie Y.

Macromol Biosci. 2011 Mar 10;11(3):427-34. doi: 10.1002/mabi.201000389. Epub 2010 Nov 24.

PMID:
21108455
20.

[A study on nano-hydroxyapatite-chitosan scaffold for bone tissue engineering].

Wang X, Liu L, Zhang Q.

Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2007 Feb;21(2):120-4. Chinese.

PMID:
17357456

Supplemental Content

Support Center