Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 143

1.

Mitochondrial regulation in pluripotent stem cells.

Xu X, Duan S, Yi F, Ocampo A, Liu GH, Izpisua Belmonte JC.

Cell Metab. 2013 Sep 3;18(3):325-32. doi: 10.1016/j.cmet.2013.06.005. Epub 2013 Jul 11. Review.

2.

Mitochondrial metabolism transition cooperates with nuclear reprogramming during induced pluripotent stem cell generation.

Liu W, Long Q, Chen K, Li S, Xiang G, Chen S, Liu X, Li Y, Yang L, Dong D, Jiang C, Feng Z, Qin D, Liu X.

Biochem Biophys Res Commun. 2013 Feb 22;431(4):767-71. doi: 10.1016/j.bbrc.2012.12.148. Epub 2013 Jan 16.

PMID:
23333381
3.

Interference with the mitochondrial bioenergetics fuels reprogramming to pluripotency via facilitation of the glycolytic transition.

Son MJ, Jeong BR, Kwon Y, Cho YS.

Int J Biochem Cell Biol. 2013 Nov;45(11):2512-8. doi: 10.1016/j.biocel.2013.07.023. Epub 2013 Aug 9.

PMID:
23939289
4.

Mitochondrial resetting and metabolic reprogramming in induced pluripotent stem cells and mitochondrial disease modeling.

Hsu YC, Chen CT, Wei YH.

Biochim Biophys Acta. 2016 Apr;1860(4):686-93. doi: 10.1016/j.bbagen.2016.01.009. Epub 2016 Jan 15. Review.

PMID:
26779594
5.

Mitochondrial function in pluripotent stem cells and cellular reprogramming.

Bukowiecki R, Adjaye J, Prigione A.

Gerontology. 2014;60(2):174-82. doi: 10.1159/000355050. Epub 2013 Nov 19. Review.

6.

The senescence-related mitochondrial/oxidative stress pathway is repressed in human induced pluripotent stem cells.

Prigione A, Fauler B, Lurz R, Lehrach H, Adjaye J.

Stem Cells. 2010 Apr;28(4):721-33. doi: 10.1002/stem.404.

7.

Mitochondrial and metabolic remodeling during reprogramming and differentiation of the reprogrammed cells.

Choi HW, Kim JH, Chung MK, Hong YJ, Jang HS, Seo BJ, Jung TH, Kim JS, Chung HM, Byun SJ, Han SG, Seo HG, Do JT.

Stem Cells Dev. 2015 Jun 1;24(11):1366-73. doi: 10.1089/scd.2014.0561. Epub 2015 Apr 2.

PMID:
25590788
8.

mTOR-regulated senescence and autophagy during reprogramming of somatic cells to pluripotency: a roadmap from energy metabolism to stem cell renewal and aging.

Menendez JA, Vellon L, Oliveras-Ferraros C, Cufí S, Vazquez-Martin A.

Cell Cycle. 2011 Nov 1;10(21):3658-77. doi: 10.4161/cc.10.21.18128. Epub 2011 Nov 1. Review.

PMID:
22052357
9.

ATG3-dependent autophagy mediates mitochondrial homeostasis in pluripotency acquirement and maintenance.

Liu K, Zhao Q, Liu P, Cao J, Gong J, Wang C, Wang W, Li X, Sun H, Zhang C, Li Y, Jiang M, Zhu S, Sun Q, Jiao J, Hu B, Zhao X, Li W, Chen Q, Zhou Q, Zhao T.

Autophagy. 2016 Nov;12(11):2000-2008. Epub 2016 Aug 11.

10.
11.

Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming.

Folmes CD, Nelson TJ, Martinez-Fernandez A, Arrell DK, Lindor JZ, Dzeja PP, Ikeda Y, Perez-Terzic C, Terzic A.

Cell Metab. 2011 Aug 3;14(2):264-71. doi: 10.1016/j.cmet.2011.06.011.

12.

HIF1α modulates cell fate reprogramming through early glycolytic shift and upregulation of PDK1-3 and PKM2.

Prigione A, Rohwer N, Hoffmann S, Mlody B, Drews K, Bukowiecki R, Blümlein K, Wanker EE, Ralser M, Cramer T, Adjaye J.

Stem Cells. 2014 Feb;32(2):364-76. doi: 10.1002/stem.1552.

13.

Somatic cells with a heavy mitochondrial DNA mutational load render induced pluripotent stem cells with distinct differentiation defects.

Wahlestedt M, Ameur A, Moraghebi R, Norddahl GL, Sten G, Woods NB, Bryder D.

Stem Cells. 2014 May;32(5):1173-82. doi: 10.1002/stem.1630.

14.

Mitochondria and pluripotent stem cells function.

Jia ZW.

Yi Chuan. 2016 Jul 20;38(7):603-611. Review.

PMID:
27733333
15.

Energy metabolism in nuclear reprogramming.

Folmes CD, Nelson TJ, Terzic A.

Biomark Med. 2011 Dec;5(6):715-29. doi: 10.2217/bmm.11.87. Review.

16.

Mitochondrial-associated cell death mechanisms are reset to an embryonic-like state in aged donor-derived iPS cells harboring chromosomal aberrations.

Prigione A, Hossini AM, Lichtner B, Serin A, Fauler B, Megges M, Lurz R, Lehrach H, Makrantonaki E, Zouboulis CC, Adjaye J.

PLoS One. 2011;6(11):e27352. doi: 10.1371/journal.pone.0027352. Epub 2011 Nov 14.

17.

Rejuvenating senescent and centenarian human cells by reprogramming through the pluripotent state.

Lapasset L, Milhavet O, Prieur A, Besnard E, Babled A, Aït-Hamou N, Leschik J, Pellestor F, Ramirez JM, De Vos J, Lehmann S, Lemaitre JM.

Genes Dev. 2011 Nov 1;25(21):2248-53. doi: 10.1101/gad.173922.111.

18.

A Role for KLF4 in Promoting the Metabolic Shift via TCL1 during Induced Pluripotent Stem Cell Generation.

Nishimura K, Aizawa S, Nugroho FL, Shiomitsu E, Tran YT, Bui PL, Borisova E, Sakuragi Y, Takada H, Kurisaki A, Hayashi Y, Fukuda A, Nakanishi M, Hisatake K.

Stem Cell Reports. 2017 Mar 14;8(3):787-801. doi: 10.1016/j.stemcr.2017.01.026. Epub 2017 Mar 2.

19.

Molecular insights into the heterogeneity of telomere reprogramming in induced pluripotent stem cells.

Wang F, Yin Y, Ye X, Liu K, Zhu H, Wang L, Chiourea M, Okuka M, Ji G, Dan J, Zuo B, Li M, Zhang Q, Liu N, Chen L, Pan X, Gagos S, Keefe DL, Liu L.

Cell Res. 2012 Apr;22(4):757-68. doi: 10.1038/cr.2011.201. Epub 2011 Dec 20.

20.

Induction of iPS cells and of cancer stem cells: the stem cell or reprogramming hypothesis of cancer?

Trosko JE.

Anat Rec (Hoboken). 2014 Jan;297(1):161-73. doi: 10.1002/ar.22793. Epub 2013 Dec 2. Review.

Supplemental Content

Support Center