Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 137

1.

Heat conduction of symmetric lattices.

Nie L, Yu L, Zheng Z, Shu C.

Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Jun;87(6):062142. Epub 2013 Jun 28.

PMID:
23848662
2.

Heat conduction in driven Frenkel-Kontorova lattices: thermal pumping and resonance.

Ai BQ, He D, Hu B.

Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Mar;81(3 Pt 1):031124. Epub 2010 Mar 25.

PMID:
20365714
3.

Heat conduction in deformable Frenkel-Kontorova lattices: thermal conductivity and negative differential thermal resistance.

Ai BQ, Hu B.

Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Jan;83(1 Pt 1):011131. Epub 2011 Jan 31.

PMID:
21405685
4.

Heat current limiter and constant heat current source.

Wu J, Wang L, Li B.

Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jun;85(6 Pt 1):061112. Epub 2012 Jun 11.

PMID:
23005056
5.

Heat conduction in one-dimensional lattices with on-site potential.

Savin AV, Gendelman OV.

Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Apr;67(4 Pt 1):041205. Epub 2003 Apr 24.

PMID:
12786351
6.

Shuttling heat across one-dimensional homogenous nonlinear lattices with a Brownian heat motor.

Li N, Zhan F, Hänggi P, Li B.

Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Jul;80(1 Pt 1):011125. Epub 2009 Jul 21.

PMID:
19658671
7.

Heat conduction in the nonlinear response regime: scaling, boundary jumps, and negative differential thermal resistance.

He D, Ai BQ, Chan HK, Hu B.

Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Apr;81(4 Pt 1):041131. Epub 2010 Apr 23.

PMID:
20481701
8.

Heat conduction in the Frenkel-Kontorova model.

Hu B, Yang L.

Chaos. 2005 Mar;15(1):15119.

PMID:
15836296
9.

Interface thermal resistance between dissimilar anharmonic lattices.

Li B, Lan J, Wang L.

Phys Rev Lett. 2005 Sep 2;95(10):104302. Epub 2005 Sep 2.

PMID:
16196932
10.

Interfacial thermal conduction and negative temperature jump in one-dimensional lattices.

Cao X, He D.

Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Sep;92(3):032135. doi: 10.1103/PhysRevE.92.032135. Epub 2015 Sep 25.

PMID:
26465454
11.

Asymmetric heat conduction in nonlinear lattices.

Hu B, Yang L, Zhang Y.

Phys Rev Lett. 2006 Sep 22;97(12):124302. Epub 2006 Sep 18.

PMID:
17025972
12.

Microscopic theory of heat transfer between two fermionic thermal baths mediated by a spin system.

Ray S, Bag BC.

Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Nov;92(5):052121. doi: 10.1103/PhysRevE.92.052121. Epub 2015 Nov 16.

PMID:
26651661
13.

Bidirectional negative differential thermal resistance in three-segment Frenkel-Kontorova lattices.

Ou YL, Lu SC, Hu CT, Ai BQ.

J Phys Condens Matter. 2016 Dec 14;28(49):495301. Epub 2016 Oct 13.

PMID:
27736802
14.

Heat transport through lattices of quantum harmonic oscillators in arbitrary dimensions.

Asadian A, Manzano D, Tiersch M, Briegel HJ.

Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Jan;87(1):012109. Epub 2013 Jan 10.

PMID:
23410285
15.

Anomalous negative differential thermal resistance in a momentum-conserving lattice.

Zhong WR, Zhang MP, Ai BQ, Hu B.

Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Sep;84(3 Pt 1):031130. Epub 2011 Sep 28.

PMID:
22060351
16.

Crossover from Fermi-Pasta-Ulam to normal diffusive behavior in heat conduction through open anharmonic lattices.

Roy D.

Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Oct;86(4 Pt 1):041102. Epub 2012 Oct 1.

PMID:
23214524
17.

Logarithmic divergent thermal conductivity in two-dimensional nonlinear lattices.

Wang L, Hu B, Li B.

Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Oct;86(4 Pt 1):040101. Epub 2012 Oct 4.

PMID:
23214513
18.

Ratchet effect and amplitude dependence of phase locking in a two-dimensional Frenkel-Kontorova model.

Wang CL, Tekić J, Duan WS, Shao ZG, Yang L.

J Chem Phys. 2013 Jan 21;138(3):034307. doi: 10.1063/1.4776226.

19.

Frequency response of a thermal diode.

Wang L, Wu J.

Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Jan;89(1):012119. Epub 2014 Jan 15.

PMID:
24580184
20.

Coupling lattice Boltzmann model for simulation of thermal flows on standard lattices.

Li Q, Luo KH, He YL, Gao YJ, Tao WQ.

Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jan;85(1 Pt 2):016710. Epub 2012 Jan 20.

PMID:
22400704

Supplemental Content

Support Center