Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 152

1.

Enterococcus faecalis strains from food, environmental, and clinical origin produce ACE-inhibitory peptides and other bioactive peptides during growth in bovine skim milk.

Gútiez L, Gómez-Sala B, Recio I, del Campo R, Cintas LM, Herranz C, Hernández PE.

Int J Food Microbiol. 2013 Aug 16;166(1):93-101. doi: 10.1016/j.ijfoodmicro.2013.06.019. Epub 2013 Jun 24.

PMID:
23845432
2.

Genetic and biochemical evidence that recombinant Enterococcus spp. strains expressing gelatinase (GelE) produce bovine milk-derived hydrolysates with high angiotensin converting enzyme-inhibitory activity (ACE-IA).

Gútiez L, Borrero J, Jiménez JJ, Gómez-Sala B, Recio I, Cintas LM, Herranz C, Hernández PE.

J Agric Food Chem. 2014 Jun 18;62(24):5555-64. doi: 10.1021/jf5006269. Epub 2014 Jun 6.

PMID:
24877744
3.

Molecular characterization of high-level gentamicin-resistant Enterococcus faecalis from chicken meat in Korea.

Choi JM, Woo GJ.

Int J Food Microbiol. 2013 Jul 1;165(1):1-6. doi: 10.1016/j.ijfoodmicro.2013.02.016. Epub 2013 Mar 5.

PMID:
23685465
4.

Comparison of genotypic and phenotypic cluster analyses of virulence determinants and possible role of CRISPR elements towards their incidence in Enterococcus faecalis and Enterococcus faecium.

Lindenstrauss AG, Pavlovic M, Bringmann A, Behr J, Ehrmann MA, Vogel RF.

Syst Appl Microbiol. 2011 Dec;34(8):553-60. doi: 10.1016/j.syapm.2011.05.002. Epub 2011 Sep 22.

PMID:
21943678
5.

Uncommitted role of enterococcal surface protein, Esp, and origin of isolates on biofilm production by Enterococcus faecalis isolated from bovine mastitis.

Elhadidy M, Elsayyad A.

J Microbiol Immunol Infect. 2013 Apr;46(2):80-4. doi: 10.1016/j.jmii.2012.02.002. Epub 2012 Apr 19.

6.

Angiotensin I-converting-enzyme-inhibitory and antibacterial peptides from Lactobacillus helveticus PR4 proteinase-hydrolyzed caseins of milk from six species.

Minervini F, Algaron F, Rizzello CG, Fox PF, Monnet V, Gobbetti M.

Appl Environ Microbiol. 2003 Sep;69(9):5297-305.

7.
8.

Angiotensin I-converting enzyme inhibitory peptides derived from bovine casein and identified by MALDI-TOF-MS/MS.

Wu Z, Pan D, Zhen X, Cao J.

J Sci Food Agric. 2013 Apr;93(6):1331-7. doi: 10.1002/jsfa.5894. Epub 2012 Sep 26.

PMID:
23015408
9.

Improved identification including MALDI-TOF mass spectrometry analysis of group D streptococci from bovine mastitis and subsequent molecular characterization of corresponding Enterococcus faecalis and Enterococcus faecium isolates.

Werner G, Fleige C, Fessler AT, Timke M, Kostrzewa M, Zischka M, Peters T, Kaspar H, Schwarz S.

Vet Microbiol. 2012 Nov 9;160(1-2):162-9. doi: 10.1016/j.vetmic.2012.05.019. Epub 2012 May 23.

PMID:
22677481
10.

Sub-lethal stress effects on virulence gene expression in Enterococcus faecalis.

Lenz CA, Hew Ferstl CM, Vogel RF.

Food Microbiol. 2010 May;27(3):317-26. doi: 10.1016/j.fm.2009.11.008. Epub 2009 Nov 10.

PMID:
20227595
11.

Novel angiotensin I-converting enzyme inhibitory peptides produced in fermented milk by specific wild Lactococcus lactis strains.

Rodríguez-Figueroa JC, González-Córdova AF, Torres-Llanez MJ, Garcia HS, Vallejo-Cordoba B.

J Dairy Sci. 2012 Oct;95(10):5536-43. doi: 10.3168/jds.2011-5186. Epub 2012 Aug 15.

PMID:
22901481
12.

Relation of Enterococcus faecalis and Enterococcus faecium isolates from foods and clinical specimens.

Templer SP, Rohner P, Baumgartner A.

J Food Prot. 2008 Oct;71(10):2100-4.

PMID:
18939760
14.

Comparison of Enterococcus faecium and Enterococcus faecalis Strains isolated from water and clinical samples: antimicrobial susceptibility and genetic relationships.

Castillo-Rojas G, Mazari-Hiríart M, Ponce de León S, Amieva-Fernández RI, Agis-Juárez RA, Huebner J, López-Vidal Y.

PLoS One. 2013;8(4):e59491. doi: 10.1371/journal.pone.0059491. Epub 2013 Apr 1.

15.

Molecular characterization of vancomycin-resistant Enterococcus spp. clinical isolates recovered from hospitalized patients among several medical institutions in China.

Sun H, Wang H, Xu Y, Jones RN, Costello AJ, Liu Y, Li G, Chen M, Mendes RE.

Diagn Microbiol Infect Dis. 2012 Dec;74(4):399-403. doi: 10.1016/j.diagmicrobio.2012.09.006. Epub 2012 Oct 23.

PMID:
23099304
16.

Reversible monensin adaptation in Enterococcus faecium, Enterococcus faecalis and Clostridium perfringens of cattle origin: potential impact on human food safety.

Simjee S, Heffron AL, Pridmore A, Shryock TR.

J Antimicrob Chemother. 2012 Oct;67(10):2388-95. doi: 10.1093/jac/dks236. Epub 2012 Jun 27.

PMID:
22740589
18.

Yak milk casein as a functional ingredient: preparation and identification of angiotensin-I-converting enzyme inhibitory peptides.

Jiang J, Chen S, Ren F, Luo Z, Zeng SS.

J Dairy Res. 2007 Feb;74(1):18-25. Epub 2006 Sep 21.

PMID:
16987434
19.

Multilocus variable-number tandem-repeat polymorphism among Brazilian Enterococcus faecalis strains.

Titze-de-Almeida R, Willems RJ, Top J, Rodrigues IP, Ferreira RF 2nd, Boelens H, Brandileone MC, Zanella RC, Felipe MS, van Belkum A.

J Clin Microbiol. 2004 Oct;42(10):4879-81.

20.

Tn1546 structures and multilocus sequence typing of vanA-containing enterococci of animal, human and food origin.

López M, Sáenz Y, Alvarez-Martínez MJ, Marco F, Robredo B, Rojo-Bezares B, Ruiz-Larrea F, Zarazaga M, Torres C.

J Antimicrob Chemother. 2010 Aug;65(8):1570-5. doi: 10.1093/jac/dkq192. Epub 2010 Jun 2.

PMID:
20519356

Supplemental Content

Support Center