Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 64

1.

Two-stage testing procedures with independent filtering for genome-wide gene-environment interaction.

Dai JY, Kooperberg C, Leblanc M, Prentice RL.

Biometrika. 2012 Dec;99(4):929-944. Epub 2012 Sep 25.

2.

Simultaneously testing for marginal genetic association and gene-environment interaction.

Dai JY, Logsdon BA, Huang Y, Hsu L, Reiner AP, Prentice RL, Kooperberg C.

Am J Epidemiol. 2012 Jul 15;176(2):164-73. doi: 10.1093/aje/kwr521. Epub 2012 Jul 6.

3.

A unified set-based test with adaptive filtering for gene-environment interaction analyses.

Liu Q, Chen LS, Nicolae DL, Pierce BL.

Biometrics. 2016 Jun;72(2):629-38. doi: 10.1111/biom.12428. Epub 2015 Oct 23.

4.

A meta-analysis approach with filtering for identifying gene-level gene-environment interactions.

Wang J, Liu Q, Pierce BL, Huo D, Olopade OI, Ahsan H, Chen LS.

Genet Epidemiol. 2018 Feb 11. doi: 10.1002/gepi.22115. [Epub ahead of print]

PMID:
29430690
5.

Jackknife-based gene-gene interactiontests for untyped SNPs.

Song M.

BMC Genet. 2015 Jul 18;16:85. doi: 10.1186/s12863-015-0225-9.

6.

A general framework for two-stage analysis of genome-wide association studies and its application to case-control studies.

Wason JM, Dudbridge F.

Am J Hum Genet. 2012 May 4;90(5):760-73. doi: 10.1016/j.ajhg.2012.03.007.

7.

Genetic association and gene-environment interaction: a new method for overcoming the lack of exposure information in controls.

Kazma R, Babron MC, Génin E.

Am J Epidemiol. 2011 Jan 15;173(2):225-35. doi: 10.1093/aje/kwq352. Epub 2010 Nov 17.

PMID:
21084555
8.

An efficient and robust method for analyzing population pharmacokinetic data in genome-wide pharmacogenomic studies: a generalized estimating equation approach.

Nagashima K, Sato Y, Noma H, Hamada C.

Stat Med. 2013 Nov 30;32(27):4838-58. doi: 10.1002/sim.5895. Epub 2013 Jul 14.

PMID:
23852468
9.

Genome-wide meta-analysis of joint tests for genetic and gene-environment interaction effects.

Aschard H, Hancock DB, London SJ, Kraft P.

Hum Hered. 2010;70(4):292-300. doi: 10.1159/000323318. Epub 2011 Feb 3.

10.

Finding novel genes by testing G × E interactions in a genome-wide association study.

Gauderman WJ, Zhang P, Morrison JL, Lewinger JP.

Genet Epidemiol. 2013 Sep;37(6):603-13. doi: 10.1002/gepi.21748. Epub 2013 Jul 19.

11.

Efficient two-step testing of gene-gene interactions in genome-wide association studies.

Lewinger JP, Morrison JL, Thomas DC, Murcray CE, Conti DV, Li D, Gauderman WJ.

Genet Epidemiol. 2013 Jul;37(5):440-51. doi: 10.1002/gepi.21720. Epub 2013 Apr 30.

PMID:
23633124
13.

Case-only genome-wide interaction study of disease risk, prognosis and treatment.

Pierce BL, Ahsan H.

Genet Epidemiol. 2010 Jan;34(1):7-15. doi: 10.1002/gepi.20427.

14.

Testing gene-environment interaction in large-scale case-control association studies: possible choices and comparisons.

Mukherjee B, Ahn J, Gruber SB, Chatterjee N.

Am J Epidemiol. 2012 Feb 1;175(3):177-90. doi: 10.1093/aje/kwr367. Epub 2011 Dec 22.

15.

Restricted parameter space models for testing gene-gene interaction.

Song M, Nicolae DL.

Genet Epidemiol. 2009 Jul;33(5):386-93. doi: 10.1002/gepi.20392.

16.

Adaptively weighted association statistics.

LeBlanc M, Kooperberg C.

Genet Epidemiol. 2009 Jul;33(5):442-52. doi: 10.1002/gepi.20397.

17.

Invited commentary: efficient testing of gene-environment interaction.

Chatterjee N, Wacholder S.

Am J Epidemiol. 2009 Jan 15;169(2):231-3; discussion 234-5. doi: 10.1093/aje/kwn352. Epub 2008 Nov 20.

18.

The case-only test for gene-environment interaction is not uniformly powerful: an empirical example.

Wu C, Chang J, Ma B, Miao X, Zhou Y, Liu Y, Li Y, Wu T, Hu Z, Shen H, Jia W, Zeng Y, Lin D, Kraft P.

Genet Epidemiol. 2013 May;37(4):402-7. doi: 10.1002/gepi.21713. Epub 2013 Mar 13.

19.

A modified two-stage approach for family-based genome-wide association studies.

Ma W, Zhou Y, Zhou Y, Chen L, Gu Z.

Eur J Hum Genet. 2014 Jan;22(1):148-51. doi: 10.1038/ejhg.2013.105. Epub 2013 May 22.

20.

IndOR: a new statistical procedure to test for SNP-SNP epistasis in genome-wide association studies.

Emily M.

Stat Med. 2012 Sep 20;31(21):2359-73. doi: 10.1002/sim.5364. Epub 2012 Jun 18.

PMID:
22711278

Supplemental Content

Support Center