Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 65

1.

Dissection of TBK1 signaling via phosphoproteomics in lung cancer cells.

Kim JY, Welsh EA, Oguz U, Fang B, Bai Y, Kinose F, Bronk C, Remsing Rix LL, Beg AA, Rix U, Eschrich SA, Koomen JM, Haura EB.

Proc Natl Acad Sci U S A. 2013 Jul 23;110(30):12414-9. doi: 10.1073/pnas.1220674110. Epub 2013 Jul 8.

2.

Evaluating TBK1 as a therapeutic target in cancers with activated IRF3.

Muvaffak A, Pan Q, Yan H, Fernandez R, Lim J, Dolinski B, Nguyen TT, Strack P, Wu S, Chung R, Zhang W, Hulton C, Ripley S, Hirsch H, Nagashima K, Wong KK, Jánne PA, Seidel-Dugan C, Zawel L, Kirschmeier PT, Middleton RE, Morris EJ, Wang Y.

Mol Cancer Res. 2014 Jul;12(7):1055-66. doi: 10.1158/1541-7786.MCR-13-0642. Epub 2014 Apr 21.

3.

Non-canonical IKKs, IKKϵ and TBK1, as novel therapeutic targets in the treatment of non-small cell lung cancer.

Kim JY, Beg AA, Haura EB.

Expert Opin Ther Targets. 2013 Oct;17(10):1109-12. doi: 10.1517/14728222.2013.833188. Epub 2013 Aug 28.

PMID:
23984985
4.

TBK1 Provides Context-Selective Support of the Activated AKT/mTOR Pathway in Lung Cancer.

Cooper JM, Ou YH, McMillan EA, Vaden RM, Zaman A, Bodemann BO, Makkar G, Posner BA, White MA.

Cancer Res. 2017 Sep 15;77(18):5077-5094. doi: 10.1158/0008-5472.CAN-17-0829. Epub 2017 Jul 17.

PMID:
28716898
5.

Combination of chemical genetics and phosphoproteomics for kinase signaling analysis enables confident identification of cellular downstream targets.

Oppermann FS, Grundner-Culemann K, Kumar C, Gruss OJ, Jallepalli PV, Daub H.

Mol Cell Proteomics. 2012 Apr;11(4):O111.012351. doi: 10.1074/mcp.O111.012351. Epub 2011 Dec 22.

6.

Phosphoproteomics identifies oncogenic Ras signaling targets and their involvement in lung adenocarcinomas.

Sudhir PR, Hsu CL, Wang MJ, Wang YT, Chen YJ, Sung TY, Hsu WL, Yang UC, Chen JY.

PLoS One. 2011;6(5):e20199. doi: 10.1371/journal.pone.0020199. Epub 2011 May 26.

7.

Mechanism of endogenous regulation of the type I interferon response by suppressor of IκB kinase epsilon (SIKE), a novel substrate of TANK-binding kinase 1 (TBK1).

Marion JD, Roberts CF, Call RJ, Forbes JL, Nelson KT, Bell JE, Bell JK.

J Biol Chem. 2013 Jun 21;288(25):18612-23. doi: 10.1074/jbc.M112.440859. Epub 2013 May 6.

8.
9.

Cytosolic-DNA-mediated, STING-dependent proinflammatory gene induction necessitates canonical NF-κB activation through TBK1.

Abe T, Barber GN.

J Virol. 2014 May;88(10):5328-41. doi: 10.1128/JVI.00037-14. Epub 2014 Mar 5.

10.

A chemical and phosphoproteomic characterization of dasatinib action in lung cancer.

Li J, Rix U, Fang B, Bai Y, Edwards A, Colinge J, Bennett KL, Gao J, Song L, Eschrich S, Superti-Furga G, Koomen J, Haura EB.

Nat Chem Biol. 2010 Apr;6(4):291-9. doi: 10.1038/nchembio.332. Epub 2010 Feb 28.

11.

Akt contributes to activation of the TRIF-dependent signaling pathways of TLRs by interacting with TANK-binding kinase 1.

Joung SM, Park ZY, Rani S, Takeuchi O, Akira S, Lee JY.

J Immunol. 2011 Jan 1;186(1):499-507. doi: 10.4049/jimmunol.0903534. Epub 2010 Nov 24.

12.

Identifying novel targets of oncogenic EGF receptor signaling in lung cancer through global phosphoproteomics.

Zhang X, Belkina N, Jacob HK, Maity T, Biswas R, Venugopalan A, Shaw PG, Kim MS, Chaerkady R, Pandey A, Guha U.

Proteomics. 2015 Jan;15(2-3):340-55. doi: 10.1002/pmic.201400315.

PMID:
25404012
13.

BX795, a TBK1 inhibitor, exhibits antitumor activity in human oral squamous cell carcinoma through apoptosis induction and mitotic phase arrest.

Bai LY, Chiu CF, Kapuriya NP, Shieh TM, Tsai YC, Wu CY, Sargeant AM, Weng JR.

Eur J Pharmacol. 2015 Dec 15;769:287-96. doi: 10.1016/j.ejphar.2015.11.032. Epub 2015 Nov 27.

PMID:
26607461
14.

The non-canonical IκB kinases IKKε and TBK1 as potential targets for the development of novel therapeutic drugs.

Niederberger E, Möser CV, Kynast KL, Geisslinger G.

Curr Mol Med. 2013 Aug;13(7):1089-97. Review.

PMID:
23157677
15.

MicroRNA-100 is a potential molecular marker of non-small cell lung cancer and functions as a tumor suppressor by targeting polo-like kinase 1.

Liu J, Lu KH, Liu ZL, Sun M, De W, Wang ZX.

BMC Cancer. 2012 Nov 14;12:519. doi: 10.1186/1471-2407-12-519.

16.

Quantitative phosphoproteomics of transforming growth factor-β signaling in colon cancer cells.

Ali NA, Molloy MP.

Proteomics. 2011 Aug;11(16):3390-401. doi: 10.1002/pmic.201100036.

PMID:
21751366
17.

Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1.

Barbie DA, Tamayo P, Boehm JS, Kim SY, Moody SE, Dunn IF, Schinzel AC, Sandy P, Meylan E, Scholl C, Fröhling S, Chan EM, Sos ML, Michel K, Mermel C, Silver SJ, Weir BA, Reiling JH, Sheng Q, Gupta PB, Wadlow RC, Le H, Hoersch S, Wittner BS, Ramaswamy S, Livingston DM, Sabatini DM, Meyerson M, Thomas RK, Lander ES, Mesirov JP, Root DE, Gilliland DG, Jacks T, Hahn WC.

Nature. 2009 Nov 5;462(7269):108-12. doi: 10.1038/nature08460. Epub 2009 Oct 21.

18.

Tank binding kinase 1 is a centrosome-associated kinase necessary for microtubule dynamics and mitosis.

Pillai S, Nguyen J, Johnson J, Haura E, Coppola D, Chellappan S.

Nat Commun. 2015 Dec 10;6:10072. doi: 10.1038/ncomms10072.

19.

Suppression of Polo like kinase 1 (PLK1) by p21(Waf1) mediates the p53-dependent prevention of caspase-independent mitotic death.

Lin YC, Sun SH, Wang FF.

Cell Signal. 2011 Nov;23(11):1816-23. doi: 10.1016/j.cellsig.2011.06.016. Epub 2011 Jun 29.

PMID:
21726628
20.

TBK1 directly engages Akt/PKB survival signaling to support oncogenic transformation.

Ou YH, Torres M, Ram R, Formstecher E, Roland C, Cheng T, Brekken R, Wurz R, Tasker A, Polverino T, Tan SL, White MA.

Mol Cell. 2011 Feb 18;41(4):458-70. doi: 10.1016/j.molcel.2011.01.019.

Supplemental Content

Support Center