Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 187

1.

Metabolic engineering of Saccharomyces cerevisiae for the production of 2-phenylethanol via Ehrlich pathway.

Kim B, Cho BR, Hahn JS.

Biotechnol Bioeng. 2014 Jan;111(1):115-24. doi: 10.1002/bit.24993. Epub 2013 Jul 22.

PMID:
23836015
2.

Improving 2-phenylethanol production via Ehrlich pathway using genetic engineered Saccharomyces cerevisiae strains.

Yin S, Zhou H, Xiao X, Lang T, Liang J, Wang C.

Curr Microbiol. 2015 May;70(5):762-7. doi: 10.1007/s00284-015-0785-y. Epub 2015 Feb 14.

PMID:
25681107
3.

Overexpressing enzymes of the Ehrlich pathway and deleting genes of the competing pathway in Saccharomyces cerevisiae for increasing 2-phenylethanol production from glucose.

Shen L, Nishimura Y, Matsuda F, Ishii J, Kondo A.

J Biosci Bioeng. 2016 Jul;122(1):34-9. doi: 10.1016/j.jbiosc.2015.12.022. Epub 2016 Mar 11.

PMID:
26975754
4.

Deletion of the Saccharomyces cerevisiae ARO8 gene, encoding an aromatic amino acid transaminase, enhances phenylethanol production from glucose.

Romagnoli G, Knijnenburg TA, Liti G, Louis EJ, Pronk JT, Daran JM.

Yeast. 2015 Jan;32(1):29-45. doi: 10.1002/yea.3015. Epub 2014 May 13.

5.

Regulation of general amino acid permeases Gap1p, GATA transcription factors Gln3p and Gat1p on 2-phenylethanol biosynthesis via Ehrlich pathway.

Chen X, Wang Z, Guo X, Liu S, He X.

J Biotechnol. 2017 Jan 20;242:83-91. doi: 10.1016/j.jbiotec.2016.11.028. Epub 2016 Nov 29.

PMID:
27908775
6.

Biosynthesis of 2-phenylethanol from glucose with genetically engineered Kluyveromyces marxianus.

Kim TY, Lee SW, Oh MK.

Enzyme Microb Technol. 2014 Jul-Aug;61-62:44-7. doi: 10.1016/j.enzmictec.2014.04.011. Epub 2014 Apr 27.

PMID:
24910335
7.

Regulation of crucial enzymes and transcription factors on 2-phenylethanol biosynthesis via Ehrlich pathway in Saccharomyces cerevisiae.

Wang Z, Bai X, Guo X, He X.

J Ind Microbiol Biotechnol. 2017 Jan;44(1):129-139. doi: 10.1007/s10295-016-1852-5. Epub 2016 Oct 21.

PMID:
27770224
8.

Significant enhancement of methionol production by co-expression of the aminotransferase gene ARO8 and the decarboxylase gene ARO10 in Saccharomyces cerevisiae.

Yin S, Lang T, Xiao X, Liu L, Sun B, Wang C.

FEMS Microbiol Lett. 2015 Mar;362(5). pii: fnu043. doi: 10.1093/femsle/fnu043. Epub 2014 Dec 8.

9.

Cloning Rosa hybrid phenylacetaldehyde synthase for the production of 2-phenylethanol in a whole cell Escherichia coli system.

Achmon Y, Ben-Barak Zelas Z, Fishman A.

Appl Microbiol Biotechnol. 2014 Apr;98(8):3603-11. doi: 10.1007/s00253-013-5269-z. Epub 2013 Oct 1.

PMID:
24081322
10.

Major contribution of the Ehrlich pathway for 2-phenylethanol/rose flavor production in Ashbya gossypii.

Ravasio D, Wendland J, Walther A.

FEMS Yeast Res. 2014 Sep;14(6):833-44. doi: 10.1111/1567-1364.12172. Epub 2014 Jun 27.

11.

Enhanced biotransformation of 2-phenylethanol with ethanol oxidation in a solid-liquid two-phase system by active dry yeast.

Rong S, Ding B, Zhang X, Zheng X, Wang Y.

Curr Microbiol. 2011 Nov;63(5):503-9. doi: 10.1007/s00284-011-0008-0. Epub 2011 Sep 11.

PMID:
21910022
12.

Metabolic engineering of Escherichia coli for production of 2-phenylethanol from renewable glucose.

Kang Z, Zhang C, Du G, Chen J.

Appl Biochem Biotechnol. 2014 Feb;172(4):2012-21. doi: 10.1007/s12010-013-0659-3. Epub 2013 Dec 8.

PMID:
24318591
13.

Identification and characterization of phenylpyruvate decarboxylase genes in Saccharomyces cerevisiae.

Vuralhan Z, Morais MA, Tai SL, Piper MD, Pronk JT.

Appl Environ Microbiol. 2003 Aug;69(8):4534-41.

14.

Bioconversion of L-phenylalanine to 2-phenylethanol by the novel stress-tolerant yeast Candida glycerinogenes WL2002-5.

Lu X, Wang Y, Zong H, Ji H, Zhuge B, Dong Z.

Bioengineered. 2016 Nov;7(6):418-423. doi: 10.1080/21655979.2016.1171437. Epub 2016 Jul 19.

PMID:
27435817
15.

Aspergillus oryzae pathways that convert phenylalanine into the flavor volatile 2-phenylethanol.

Masuo S, Osada L, Zhou S, Fujita T, Takaya N.

Fungal Genet Biol. 2015 Apr;77:22-30. doi: 10.1016/j.fgb.2015.03.002. Epub 2015 Mar 20.

PMID:
25797315
16.

Reduction of furan derivatives by overexpressing NADH-dependent Adh1 improves ethanol fermentation using xylose as sole carbon source with Saccharomyces cerevisiae harboring XR-XDH pathway.

Ishii J, Yoshimura K, Hasunuma T, Kondo A.

Appl Microbiol Biotechnol. 2013 Mar;97(6):2597-607. doi: 10.1007/s00253-012-4376-6. Epub 2012 Sep 22.

PMID:
23001007
17.

Utilizing an endogenous pathway for 1-butanol production in Saccharomyces cerevisiae.

Si T, Luo Y, Xiao H, Zhao H.

Metab Eng. 2014 Mar;22:60-8. doi: 10.1016/j.ymben.2014.01.002. Epub 2014 Jan 9.

PMID:
24412568
18.

Quorum-Sensing Kinetics in Saccharomyces cerevisiae: A Symphony of ARO Genes and Aromatic Alcohols.

Avbelj M, Zupan J, Kranjc L, Raspor P.

J Agric Food Chem. 2015 Sep 30;63(38):8544-50. doi: 10.1021/acs.jafc.5b03400. Epub 2015 Sep 22.

PMID:
26367540
19.

Simultaneous synthesis of 2-phenylethanol and L-homophenylalanine using aromatic transaminase with yeast Ehrlich pathway.

Hwang JY, Park J, Seo JH, Cha M, Cho BK, Kim J, Kim BG.

Biotechnol Bioeng. 2009 Apr 1;102(5):1323-9. doi: 10.1002/bit.22178.

PMID:
19016485
20.

Promoters inducible by aromatic amino acids and γ-aminobutyrate (GABA) for metabolic engineering applications in Saccharomyces cerevisiae.

Kim S, Lee K, Bae SJ, Hahn JS.

Appl Microbiol Biotechnol. 2015 Mar;99(6):2705-14. doi: 10.1007/s00253-014-6303-5. Epub 2015 Jan 10.

PMID:
25573467

Supplemental Content

Support Center