Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 447

2.

Cortical inhibitory cell types differentially form intralaminar and interlaminar subnetworks with excitatory neurons.

Otsuka T, Kawaguchi Y.

J Neurosci. 2009 Aug 26;29(34):10533-40. doi: 10.1523/JNEUROSCI.2219-09.2009.

3.

Functional properties of fast spiking interneurons and their synaptic connections with pyramidal cells in primate dorsolateral prefrontal cortex.

González-Burgos G, Krimer LS, Povysheva NV, Barrionuevo G, Lewis DA.

J Neurophysiol. 2005 Feb;93(2):942-53. Epub 2004 Sep 22.

4.

Properties of excitatory synaptic responses in fast-spiking interneurons and pyramidal cells from monkey and rat prefrontal cortex.

Povysheva NV, Gonzalez-Burgos G, Zaitsev AV, Kröner S, Barrionuevo G, Lewis DA, Krimer LS.

Cereb Cortex. 2006 Apr;16(4):541-52. Epub 2005 Jul 20.

PMID:
16033926
5.

Distinct local circuits between neocortical pyramidal cells and fast-spiking interneurons in young adult rats.

Angulo MC, Staiger JF, Rossier J, Audinat E.

J Neurophysiol. 2003 Feb;89(2):943-53.

7.

Fast-spiking cell to pyramidal cell connections are the most sensitive to propofol-induced facilitation of GABAergic currents in rat insular cortex.

Koyanagi Y, Oi Y, Yamamoto K, Koshikawa N, Kobayashi M.

Anesthesiology. 2014 Jul;121(1):68-78. doi: 10.1097/ALN.0000000000000183.

PMID:
24577288
8.

Synaptic efficacy during repetitive activation of excitatory inputs in primate dorsolateral prefrontal cortex.

González-Burgos G, Krimer LS, Urban NN, Barrionuevo G, Lewis DA.

Cereb Cortex. 2004 May;14(5):530-42. Epub 2004 Mar 28.

PMID:
15054069
9.
10.

Reduced chemical and electrical connections of fast-spiking interneurons in experimental cortical dysplasia.

Zhou FW, Roper SN.

J Neurophysiol. 2014 Sep 15;112(6):1277-90. doi: 10.1152/jn.00126.2014. Epub 2014 Jun 18.

11.

Balance of inhibitory and excitatory synaptic activity is altered in fast-spiking interneurons in experimental cortical dysplasia.

Zhou FW, Chen HX, Roper SN.

J Neurophysiol. 2009 Oct;102(4):2514-25. doi: 10.1152/jn.00557.2009. Epub 2009 Aug 19.

12.
13.

Dopamine modulation of perisomatic and peridendritic inhibition in prefrontal cortex.

Gao WJ, Wang Y, Goldman-Rakic PS.

J Neurosci. 2003 Mar 1;23(5):1622-30.

14.

Pyramidal cell communication within local networks in layer 2/3 of rat neocortex.

Holmgren C, Harkany T, Svennenfors B, Zilberter Y.

J Physiol. 2003 Aug 15;551(Pt 1):139-53. Epub 2003 Jun 17.

15.

Synaptic Mechanisms of Tight Spike Synchrony at Gamma Frequency in Cerebral Cortex.

Salkoff DB, Zagha E, Yüzgeç Ö, McCormick DA.

J Neurosci. 2015 Jul 15;35(28):10236-51. doi: 10.1523/JNEUROSCI.0828-15.2015.

16.

Short-term plasticity of unitary inhibitory-to-inhibitory synapses depends on the presynaptic interneuron subtype.

Ma Y, Hu H, Agmon A.

J Neurosci. 2012 Jan 18;32(3):983-8. doi: 10.1523/JNEUROSCI.5007-11.2012.

17.

P/Q-type, but not N-type, calcium channels mediate GABA release from fast-spiking interneurons to pyramidal cells in rat prefrontal cortex.

Zaitsev AV, Povysheva NV, Lewis DA, Krimer LS.

J Neurophysiol. 2007 May;97(5):3567-73. Epub 2007 Feb 28.

18.
19.

Mechanism underlying unaltered cortical inhibitory synaptic transmission in contrast with enhanced excitatory transmission in CaV2.1 knockin migraine mice.

Vecchia D, Tottene A, van den Maagdenberg AM, Pietrobon D.

Neurobiol Dis. 2014 Sep;69:225-34. doi: 10.1016/j.nbd.2014.05.035. Epub 2014 Jun 5.

20.

Multiple forms of short-term plasticity at excitatory synapses in rat medial prefrontal cortex.

Hempel CM, Hartman KH, Wang XJ, Turrigiano GG, Nelson SB.

J Neurophysiol. 2000 May;83(5):3031-41.

Supplemental Content

Support Center