Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 136

1.

Segmental folding of chromosomes: a basis for structural and regulatory chromosomal neighborhoods?

Nora EP, Dekker J, Heard E.

Bioessays. 2013 Sep;35(9):818-28. doi: 10.1002/bies.201300040. Epub 2013 Jul 5.

2.

Topologically associating domains are stable units of replication-timing regulation.

Pope BD, Ryba T, Dileep V, Yue F, Wu W, Denas O, Vera DL, Wang Y, Hansen RS, Canfield TK, Thurman RE, Cheng Y, Gülsoy G, Dennis JH, Snyder MP, Stamatoyannopoulos JA, Taylor J, Hardison RC, Kahveci T, Ren B, Gilbert DM.

Nature. 2014 Nov 20;515(7527):402-5. doi: 10.1038/nature13986.

3.

Polycomb silencing: from linear chromatin domains to 3D chromosome folding.

Cheutin T, Cavalli G.

Curr Opin Genet Dev. 2014 Apr;25:30-7. doi: 10.1016/j.gde.2013.11.016. Epub 2014 Jan 14. Review.

4.

Active chromatin and transcription play a key role in chromosome partitioning into topologically associating domains.

Ulianov SV, Khrameeva EE, Gavrilov AA, Flyamer IM, Kos P, Mikhaleva EA, Penin AA, Logacheva MD, Imakaev MV, Chertovich A, Gelfand MS, Shevelyov YY, Razin SV.

Genome Res. 2016 Jan;26(1):70-84. doi: 10.1101/gr.196006.115. Epub 2015 Oct 30.

5.

Topologically associating domains and their long-range contacts are established during early G1 coincident with the establishment of the replication-timing program.

Dileep V, Ay F, Sima J, Vera DL, Noble WS, Gilbert DM.

Genome Res. 2015 Aug;25(8):1104-13. doi: 10.1101/gr.183699.114. Epub 2015 May 20.

6.

Structural and functional diversity of Topologically Associating Domains.

Dekker J, Heard E.

FEBS Lett. 2015 Oct 7;589(20 Pt A):2877-84. doi: 10.1016/j.febslet.2015.08.044. Epub 2015 Sep 5. Review.

7.

Modelling genome-wide topological associating domains in mouse embryonic stem cells.

Zhan Y, Giorgetti L, Tiana G.

Chromosome Res. 2017 Mar;25(1):5-14. doi: 10.1007/s10577-016-9544-6. Epub 2017 Jan 20.

PMID:
28108933
8.

Spatial organization of chromatin domains and compartments in single chromosomes.

Wang S, Su JH, Beliveau BJ, Bintu B, Moffitt JR, Wu CT, Zhuang X.

Science. 2016 Aug 5;353(6299):598-602. doi: 10.1126/science.aaf8084. Epub 2016 Jul 21.

9.

Structural Fluctuations of the Chromatin Fiber within Topologically Associating Domains.

Tiana G, Amitai A, Pollex T, Piolot T, Holcman D, Heard E, Giorgetti L.

Biophys J. 2016 Mar 29;110(6):1234-45. doi: 10.1016/j.bpj.2016.02.003.

10.

Breaking TADs: How Alterations of Chromatin Domains Result in Disease.

Lupiáñez DG, Spielmann M, Mundlos S.

Trends Genet. 2016 Apr;32(4):225-37. doi: 10.1016/j.tig.2016.01.003. Epub 2016 Feb 7. Review.

PMID:
26862051
11.

Chromatin-driven behavior of topologically associating domains.

Ciabrelli F, Cavalli G.

J Mol Biol. 2015 Feb 13;427(3):608-25. doi: 10.1016/j.jmb.2014.09.013. Epub 2014 Oct 2. Review.

12.

Gene regulation during development in the light of topologically associating domains.

Remeseiro S, Hörnblad A, Spitz F.

Wiley Interdiscip Rev Dev Biol. 2016 Mar-Apr;5(2):169-85. doi: 10.1002/wdev.218. Epub 2015 Nov 12. Review.

PMID:
26558551
13.

Predictive polymer modeling reveals coupled fluctuations in chromosome conformation and transcription.

Giorgetti L, Galupa R, Nora EP, Piolot T, Lam F, Dekker J, Tiana G, Heard E.

Cell. 2014 May 8;157(4):950-63. doi: 10.1016/j.cell.2014.03.025.

14.

Distinct structural transitions of chromatin topological domains correlate with coordinated hormone-induced gene regulation.

Le Dily F, Baù D, Pohl A, Vicent GP, Serra F, Soronellas D, Castellano G, Wright RH, Ballare C, Filion G, Marti-Renom MA, Beato M.

Genes Dev. 2014 Oct 1;28(19):2151-62. doi: 10.1101/gad.241422.114.

15.

Structural heterogeneity and functional diversity of topologically associating domains in mammalian genomes.

Wang XT, Dong PF, Zhang HY, Peng C.

Nucleic Acids Res. 2015 Sep 3;43(15):7237-46. doi: 10.1093/nar/gkv684. Epub 2015 Jul 6.

16.

Making Sense of the Tangle: Insights into Chromatin Folding and Gene Regulation.

Chung IM, Ketharnathan S, Kim SH, Thiruvengadam M, Rani MK, Rajakumar G.

Genes (Basel). 2016 Sep 23;7(10). pii: E71. doi: 10.3390/genes7100071. Review.

17.

Hierarchical folding and reorganization of chromosomes are linked to transcriptional changes in cellular differentiation.

Fraser J, Ferrai C, Chiariello AM, Schueler M, Rito T, Laudanno G, Barbieri M, Moore BL, Kraemer DC, Aitken S, Xie SQ, Morris KJ, Itoh M, Kawaji H, Jaeger I, Hayashizaki Y, Carninci P, Forrest AR; FANTOM Consortium, Semple CA, Dostie J, Pombo A, Nicodemi M.

Mol Syst Biol. 2015 Dec 23;11(12):852. doi: 10.15252/msb.20156492.

18.

Spatial partitioning of the regulatory landscape of the X-inactivation centre.

Nora EP, Lajoie BR, Schulz EG, Giorgetti L, Okamoto I, Servant N, Piolot T, van Berkum NL, Meisig J, Sedat J, Gribnau J, Barillot E, Blüthgen N, Dekker J, Heard E.

Nature. 2012 Apr 11;485(7398):381-5. doi: 10.1038/nature11049.

19.

Developmental control of replication timing defines a new breed of chromosomal domains with a novel mechanism of chromatin unfolding.

Takebayashi S, Ryba T, Gilbert DM.

Nucleus. 2012 Nov-Dec;3(6):500-7. doi: 10.4161/nucl.22318. Epub 2012 Sep 28.

20.

Distinct polymer physics principles govern chromatin dynamics in mouse and Drosophila topological domains.

Ea V, Sexton T, Gostan T, Herviou L, Baudement MO, Zhang Y, Berlivet S, Le Lay-Taha MN, Cathala G, Lesne A, Victor JM, Fan Y, Cavalli G, Forné T.

BMC Genomics. 2015 Aug 15;16:607. doi: 10.1186/s12864-015-1786-8.

Supplemental Content

Support Center