Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 125

1.

Disulfide stress-induced aluminium toxicity: molecular insights through genome-wide screening of Saccharomyces cerevisiae.

Tun NM, O'Doherty PJ, Perrone GG, Bailey TD, Kersaitis C, Wu MJ.

Metallomics. 2013 Aug;5(8):1068-75. doi: 10.1039/c3mt00083d.

PMID:
23832094
2.

Delineation of the molecular mechanism for disulfide stress-induced aluminium toxicity.

Wu MJ, Murphy PA, O'Doherty PJ, Mieruszynski S, Jones M, Kersaitis C, Rogers PJ, Bailey TD, Higgins VJ.

Biometals. 2012 Jun;25(3):553-61. doi: 10.1007/s10534-012-9534-x. Epub 2012 Mar 9.

PMID:
22403011
3.

The global transcriptional response to transient cell wall damage in Saccharomyces cerevisiae and its regulation by the cell integrity signaling pathway.

García R, Bermejo C, Grau C, Pérez R, Rodríguez-Peña JM, Francois J, Nombela C, Arroyo J.

J Biol Chem. 2004 Apr 9;279(15):15183-95. Epub 2004 Jan 21.

4.

Transcriptional response of Saccharomyces cerevisiae to the plasma membrane-perturbing compound chitosan.

Zakrzewska A, Boorsma A, Brul S, Hellingwerf KJ, Klis FM.

Eukaryot Cell. 2005 Apr;4(4):703-15.

5.

Transcriptome profiling of a Saccharomyces cerevisiae mutant with a constitutively activated Ras/cAMP pathway.

Jones DL, Petty J, Hoyle DC, Hayes A, Ragni E, Popolo L, Oliver SG, Stateva LI.

Physiol Genomics. 2003 Dec 16;16(1):107-18.

PMID:
14570984
6.

Phenotype analysis of Saccharomyces cerevisiae mutants with deletions in Pir cell wall glycoproteins.

Mazán M, Mazánová K, Farkas V.

Antonie Van Leeuwenhoek. 2008 Aug;94(2):335-42. doi: 10.1007/s10482-008-9228-0. Epub 2008 Feb 16.

PMID:
18278564
7.

Genome-wide screening of aluminum tolerance in Saccharomyces cerevisiae.

Kakimoto M, Kobayashi A, Fukuda R, Ono Y, Ohta A, Yoshimura E.

Biometals. 2005 Oct;18(5):467-74. Erratum in: Biometals. 2006 Aug;19(4):451. Ono, Yasuke [corrected to Ono, Yusuke].

PMID:
16333747
8.

Identification of aluminium transport-related genes via genome-wide phenotypic screening of Saccharomyces cerevisiae.

Tun NM, O'Doherty PJ, Chen ZH, Wu XY, Bailey TD, Kersaitis C, Wu MJ.

Metallomics. 2014 Aug;6(8):1558-64. doi: 10.1039/c4mt00116h.

PMID:
24926745
9.

A novel endoplasmic reticulum membrane protein Rcr1 regulates chitin deposition in the cell wall of Saccharomyces cerevisiae.

Imai K, Noda Y, Adachi H, Yoda K.

J Biol Chem. 2005 Mar 4;280(9):8275-84. Epub 2004 Dec 8.

10.

Sed1p and Srl1p are required to compensate for cell wall instability in Saccharomyces cerevisiae mutants defective in multiple GPI-anchored mannoproteins.

Hagen I, Ecker M, Lagorce A, Francois JM, Sestak S, Rachel R, Grossmann G, Hauser NC, Hoheisel JD, Tanner W, Strahl S.

Mol Microbiol. 2004 Jun;52(5):1413-25.

11.

Activation of signaling pathways related to cell wall integrity and multidrug resistance by organic solvent in Saccharomyces cerevisiae.

Nishida N, Jing D, Kuroda K, Ueda M.

Curr Genet. 2014 Aug;60(3):149-62. doi: 10.1007/s00294-013-0419-5. Epub 2013 Dec 31.

PMID:
24378717
12.
13.

Up-regulation of the cell integrity pathway in saccharomyces cerevisiae suppresses temperature sensitivity of the pgs1Delta mutant.

Zhong Q, Li G, Gvozdenovic-Jeremic J, Greenberg ML.

J Biol Chem. 2007 Jun 1;282(22):15946-53. Epub 2007 Apr 9.

14.
17.

Atomic force microscopy demonstrates that disulfide bridges are required for clustering of the yeast cell wall integrity sensor Wsc1.

Dupres V, Heinisch JJ, Dufrêne YF.

Langmuir. 2011 Dec 20;27(24):15129-34. doi: 10.1021/la203679s. Epub 2011 Nov 22.

PMID:
22107047
18.
19.
20.

Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid.

Mira NP, Palma M, Guerreiro JF, Sá-Correia I.

Microb Cell Fact. 2010 Oct 25;9:79. doi: 10.1186/1475-2859-9-79.

Supplemental Content

Support Center