Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 519

1.

Activated graphene-based carbons as supercapacitor electrodes with macro- and mesopores.

Kim T, Jung G, Yoo S, Suh KS, Ruoff RS.

ACS Nano. 2013 Aug 27;7(8):6899-905. doi: 10.1021/nn402077v. Epub 2013 Jul 15.

PMID:
23829569
2.

Capacitive energy storage in nanostructured carbon-electrolyte systems.

Simon P, Gogotsi Y.

Acc Chem Res. 2013 May 21;46(5):1094-103. doi: 10.1021/ar200306b. Epub 2012 Jun 6.

PMID:
22670843
3.

Effects of different electrolytes on the electrochemical and dynamic behavior of electric double layer capacitors based on a porous silicon carbide electrode.

Kim M, Oh I, Kim J.

Phys Chem Chem Phys. 2015 Jul 7;17(25):16367-74. doi: 10.1039/c5cp01728a. Epub 2015 Jun 5.

PMID:
26051533
4.

Carbon-based supercapacitors produced by activation of graphene.

Zhu Y, Murali S, Stoller MD, Ganesh KJ, Cai W, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M, Su D, Stach EA, Ruoff RS.

Science. 2011 Jun 24;332(6037):1537-41. doi: 10.1126/science.1200770. Epub 2011 May 12.

5.

Holey graphene frameworks for highly efficient capacitive energy storage.

Xu Y, Lin Z, Zhong X, Huang X, Weiss NO, Huang Y, Duan X.

Nat Commun. 2014 Aug 8;5:4554. doi: 10.1038/ncomms5554.

PMID:
25105994
6.

Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode.

Hao P, Zhao Z, Tian J, Li H, Sang Y, Yu G, Cai H, Liu H, Wong CP, Umar A.

Nanoscale. 2014 Oct 21;6(20):12120-9. doi: 10.1039/c4nr03574g. Epub 2014 Sep 9.

PMID:
25201446
7.

3D macroporous graphene frameworks for supercapacitors with high energy and power densities.

Choi BG, Yang M, Hong WH, Choi JW, Huh YS.

ACS Nano. 2012 May 22;6(5):4020-8. doi: 10.1021/nn3003345. Epub 2012 Apr 23.

PMID:
22524516
8.

Crumpled Nitrogen-Doped Graphene for Supercapacitors with High Gravimetric and Volumetric Performances.

Wang J, Ding B, Xu Y, Shen L, Dou H, Zhang X.

ACS Appl Mater Interfaces. 2015 Oct 14;7(40):22284-91. doi: 10.1021/acsami.5b05428. Epub 2015 Oct 2.

PMID:
26399912
9.

Three-dimensional graphene-based macro- and mesoporous frameworks for high-performance electrochemical capacitive energy storage.

Wu ZS, Sun Y, Tan YZ, Yang S, Feng X, Müllen K.

J Am Chem Soc. 2012 Dec 5;134(48):19532-5. doi: 10.1021/ja308676h. Epub 2012 Nov 20.

PMID:
23148416
10.

Graphene supercapacitor with both high power and energy density.

Yang H, Kannappan S, Pandian AS, Jang JH, Lee YS, Lu W.

Nanotechnology. 2017 Nov 3;28(44):445401. doi: 10.1088/1361-6528/aa8948. Epub 2017 Aug 30.

PMID:
28854156
11.

Nitrogen-enriched hierarchically porous carbons prepared from polybenzoxazine for high-performance supercapacitors.

Wan L, Wang J, Xie L, Sun Y, Li K.

ACS Appl Mater Interfaces. 2014 Sep 10;6(17):15583-96. doi: 10.1021/am504564q. Epub 2014 Aug 27.

PMID:
25137068
12.

Controlled multimodal hierarchically porous electrode self-assembly of electrochemically exfoliated graphene for fully solid-state flexible supercapacitor.

Sari NP, Dutta D, Jamaluddin A, Chang JK, Su CY.

Phys Chem Chem Phys. 2017 Nov 22;19(45):30381-30392. doi: 10.1039/c7cp05799g.

PMID:
29119159
13.

An Ideal Electrode Material, 3D Surface-Microporous Graphene for Supercapacitors with Ultrahigh Areal Capacitance.

Chang L, Stacchiola DJ, Hu YH.

ACS Appl Mater Interfaces. 2017 Jul 26;9(29):24655-24661. doi: 10.1021/acsami.7b07381. Epub 2017 Jul 11.

PMID:
28671451
14.

Electrospray-deposition of graphene electrodes: a simple technique to build high-performance supercapacitors.

Tang H, Yang C, Lin Z, Yang Q, Kang F, Wong CP.

Nanoscale. 2015 May 28;7(20):9133-9. doi: 10.1039/c5nr00465a.

PMID:
25896639
15.

Studies on supercapacitor electrode material from activated lignin-derived mesoporous carbon.

Saha D, Li Y, Bi Z, Chen J, Keum JK, Hensley DK, Grappe HA, Meyer HM 3rd, Dai S, Paranthaman MP, Naskar AK.

Langmuir. 2014 Jan 28;30(3):900-10. doi: 10.1021/la404112m. Epub 2014 Jan 16.

PMID:
24400670
16.

Controlled porous structures of graphene aerogels and their effect on supercapacitor performance.

Jung SM, Mafra DL, Lin CT, Jung HY, Kong J.

Nanoscale. 2015 Mar 14;7(10):4386-93. doi: 10.1039/c4nr07564a.

PMID:
25682978
17.

High-performance supercapacitor electrode materials prepared from various pollens.

Zhang L, Zhang F, Yang X, Leng K, Huang Y, Chen Y.

Small. 2013 Apr 22;9(8):1342-7. doi: 10.1002/smll.201202943. Epub 2013 Mar 13.

PMID:
23494916
18.

Template-assisted low temperature synthesis of functionalized graphene for ultrahigh volumetric performance supercapacitors.

Yan J, Wang Q, Wei T, Jiang L, Zhang M, Jing X, Fan Z.

ACS Nano. 2014 May 27;8(5):4720-9. doi: 10.1021/nn500497k. Epub 2014 Apr 17.

PMID:
24730514
19.

Nitrogen-Doped Porous Carbons As Electrode Materials for High-Performance Supercapacitor and Dye-Sensitized Solar Cell.

Wang L, Gao Z, Chang J, Liu X, Wu D, Xu F, Guo Y, Jiang K.

ACS Appl Mater Interfaces. 2015 Sep 16;7(36):20234-44. doi: 10.1021/acsami.5b05790. Epub 2015 Sep 3.

PMID:
26320745
20.

Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density.

Cheng Q, Tang J, Ma J, Zhang H, Shinya N, Qin LC.

Phys Chem Chem Phys. 2011 Oct 21;13(39):17615-24. doi: 10.1039/c1cp21910c. Epub 2011 Sep 1.

PMID:
21887427

Supplemental Content

Support Center