Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 99

1.

Noble-transition metal nanoparticle breathing in a reactive gas atmosphere.

Petkov V, Shan S, Chupas P, Yin J, Yang L, Luo J, Zhong CJ.

Nanoscale. 2013 Aug 21;5(16):7379-87. doi: 10.1039/c3nr02582a.

PMID:
23828235
2.

Reactive gas environment induced structural modification of noble-transition metal alloy nanoparticles.

Petkov V, Yang L, Yin J, Loukrakpam R, Shan S, Wanjala B, Luo J, Chapman KW, Zhong CJ.

Phys Rev Lett. 2012 Sep 21;109(12):125504. Epub 2012 Sep 19.

PMID:
23005959
3.

A distinct atomic structure-catalytic activity relationship in 3-10 nm supported Au particles.

Petkov V, Ren Y, Shan S, Luo J, Zhong CJ.

Nanoscale. 2014 Jan 7;6(1):532-8. doi: 10.1039/c3nr05362h. Epub 2013 Nov 15.

PMID:
24232747
4.

Ensemble modeling of very small ZnO nanoparticles.

Niederdraenk F, Seufert K, Stahl A, Bhalerao-Panajkar RS, Marathe S, Kulkarni SK, Neder RB, Kumpf C.

Phys Chem Chem Phys. 2011 Jan 14;13(2):498-505. doi: 10.1039/c0cp00758g. Epub 2010 Nov 8.

PMID:
21060929
5.

Facile synthesis, stabilization, and anti-bacterial performance of discrete Ag nanoparticles using Medicago sativa seed exudates.

Lukman AI, Gong B, Marjo CE, Roessner U, Harris AT.

J Colloid Interface Sci. 2011 Jan 15;353(2):433-44. doi: 10.1016/j.jcis.2010.09.088. Epub 2010 Oct 25.

PMID:
20974473
6.

Organic carbonates as stabilizing solvents for transition-metal nanoparticles.

Vollmer C, Thomann R, Janiak C.

Dalton Trans. 2012 Aug 28;41(32):9722-7. doi: 10.1039/c2dt30668a. Epub 2012 Jul 12.

PMID:
22786622
7.

Correlation between platinum nanoparticle surface rearrangement induced by heat treatment and activity for an oxygen reduction reaction.

Chung DY, Chung YH, Jung N, Choi KH, Sung YE.

Phys Chem Chem Phys. 2013 Aug 28;15(32):13658-63. doi: 10.1039/c3cp51520f.

PMID:
23835855
8.

Theoretical analysis of the effect of particle size and support on the kinetics of oxygen reduction reaction on platinum nanoparticles.

Viswanathan V, Wang FY.

Nanoscale. 2012 Aug 21;4(16):5110-7. doi: 10.1039/c2nr30572k. Epub 2012 Jul 12.

PMID:
22785611
9.

Enhancing the photocatalytic efficiency of TiO2 nanopowders for H2 production by using non-noble transition metal co-catalysts.

Tran PD, Xi L, Batabyal SK, Wong LH, Barber J, Loo JS.

Phys Chem Chem Phys. 2012 Sep 7;14(33):11596-9. doi: 10.1039/c2cp41450c. Epub 2012 Jul 25.

PMID:
22828930
10.

Cytotoxicity in the age of nano: the role of fourth period transition metal oxide nanoparticle physicochemical properties.

Chusuei CC, Wu CH, Mallavarapu S, Hou FY, Hsu CM, Winiarz JG, Aronstam RS, Huang YW.

Chem Biol Interact. 2013 Nov 25;206(2):319-26. doi: 10.1016/j.cbi.2013.09.020. Epub 2013 Oct 10.

PMID:
24120544
11.

The formation mechanism and structural characterization of the mixed transition-metal complex hydride Mg2(FeH6)0.5(CoH5)0.5 obtained by reactive milling.

Deledda S, Hauback BC.

Nanotechnology. 2009 May 20;20(20):204010. doi: 10.1088/0957-4484/20/20/204010. Epub 2009 Apr 23.

PMID:
19420658
12.

In-situ X-ray absorption study of evolution of oxidation states and structure of cobalt in Co and CoPt bimetallic nanoparticles (4 nm) under reducing (H2) and oxidizing (O2) environments.

Zheng F, Alayoglu S, Guo J, Pushkarev V, Li Y, Glans PA, Chen JL, Somorjai G.

Nano Lett. 2011 Feb 9;11(2):847-53. doi: 10.1021/nl104209c. Epub 2011 Jan 19.

PMID:
21247197
13.

Electrochemical oxygen reduction behavior of selectively deposited platinum atoms on gold nanoparticles.

Sarkar A, Kerr JB, Cairns EJ.

Chemphyschem. 2013 Jul 22;14(10):2132-42. doi: 10.1002/cphc.201200917. Epub 2013 Mar 15.

PMID:
23505224
14.

Simple, readily controllable palladium nanoparticle formation on surface-assembled viral nanotemplates.

Manocchi AK, Horelik NE, Lee B, Yi H.

Langmuir. 2010 Mar 2;26(5):3670-7. doi: 10.1021/la9031514.

PMID:
19919039
15.

High capacity hydrogen absorption in transition-metal ethylene complexes: consequences of nanoclustering.

Phillips AB, Shivaram BS.

Nanotechnology. 2009 May 20;20(20):204020. doi: 10.1088/0957-4484/20/20/204020. Epub 2009 Apr 24.

PMID:
19420668
16.

Non-collinear magnetism induced by frustration in transition-metal nanostructures deposited on surfaces.

Lounis S.

J Phys Condens Matter. 2014 Jul 9;26(27):273201. doi: 10.1088/0953-8984/26/27/273201. Epub 2014 Jun 11. Review.

PMID:
24918578
17.

Size-dependent electrocatalytic activity of gold nanoparticles on HOPG and highly boron-doped diamond surfaces.

BrĂ¼lle T, Ju W, Niedermayr P, Denisenko A, Paschos O, Schneider O, Stimming U.

Molecules. 2011 Dec 6;16(12):10059-77. doi: 10.3390/molecules161210059.

18.

Particle size dependent adsorption and reaction kinetics on reduced and partially oxidized Pd nanoparticles.

Schalow T, Brandt B, Starr DE, Laurin M, Shaikhutdinov SK, Schauermann S, Libuda J, Freund HJ.

Phys Chem Chem Phys. 2007 Mar 21;9(11):1347-61. Epub 2007 Jan 23.

PMID:
17347708
19.

In situ study of atomic structure transformations of Pt-Ni nanoparticle catalysts during electrochemical potential cycling.

Tuaev X, Rudi S, Petkov V, Hoell A, Strasser P.

ACS Nano. 2013 Jul 23;7(7):5666-74. doi: 10.1021/nn402406k. Epub 2013 Jul 12.

PMID:
23805992
20.

Size-controlled dissolution of organic-coated silver nanoparticles.

Ma R, Levard C, Marinakos SM, Cheng Y, Liu J, Michel FM, Brown GE, Lowry GV.

Environ Sci Technol. 2012 Jan 17;46(2):752-9. doi: 10.1021/es201686j. Epub 2011 Dec 27.

PMID:
22142034

Supplemental Content

Support Center