Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 317

1.

Sol-gel derived nanoscale bioactive glass (NBG) particles reinforced poly(ε-caprolactone) composites for bone tissue engineering.

Lei B, Shin KH, Noh DY, Jo IH, Koh YH, Kim HE, Kim SE.

Mater Sci Eng C Mater Biol Appl. 2013 Apr 1;33(3):1102-8. doi: 10.1016/j.msec.2012.11.039. Epub 2012 Dec 8.

PMID:
23827548
2.

In vitro bioactivity and mechanical properties of bioactive glass nanoparticles/polycaprolactone composites.

Ji L, Wang W, Jin D, Zhou S, Song X.

Mater Sci Eng C Mater Biol Appl. 2015 Jan;46:1-9. doi: 10.1016/j.msec.2014.09.041. Epub 2014 Oct 5.

PMID:
25491953
3.

New generation poly(ε-caprolactone)/gel-derived bioactive glass composites for bone tissue engineering: Part I. Material properties.

Dziadek M, Menaszek E, Zagrajczuk B, Pawlik J, Cholewa-Kowalska K.

Mater Sci Eng C Mater Biol Appl. 2015 Nov 1;56:9-21. doi: 10.1016/j.msec.2015.06.020. Epub 2015 Jun 11.

PMID:
26249560
4.

Bioactive glass microspheres as reinforcement for improving the mechanical properties and biological performance of poly(ε-caprolactone) polymer for bone tissue regeneration.

Lei B, Shin KH, Noh DY, Koh YH, Choi WY, Kim HE.

J Biomed Mater Res B Appl Biomater. 2012 May;100(4):967-75. doi: 10.1002/jbm.b.32659. Epub 2012 Jan 25.

PMID:
22279025
5.

One- and three-dimensional growth of hydroxyapatite nanowires during sol-gel-hydrothermal synthesis.

Costa DO, Dixon SJ, Rizkalla AS.

ACS Appl Mater Interfaces. 2012 Mar;4(3):1490-9. doi: 10.1021/am201735k. Epub 2012 Feb 15.

PMID:
22296410
6.

In vitro/in vivo biocompatibility and mechanical properties of bioactive glass nanofiber and poly(epsilon-caprolactone) composite materials.

Jo JH, Lee EJ, Shin DS, Kim HE, Kim HW, Koh YH, Jang JH.

J Biomed Mater Res B Appl Biomater. 2009 Oct;91(1):213-20. doi: 10.1002/jbm.b.31392.

PMID:
19422050
7.

Effect of incorporation of nanoscale bioactive glass and hydroxyapatite in PCL/chitosan nanofibers for bone and periodontal tissue engineering.

Shalumon KT, Sowmya S, Sathish D, Chennazhi KP, Nair SV, Jayakumar R.

J Biomed Nanotechnol. 2013 Mar;9(3):430-40.

PMID:
23620999
8.

Synthesis and electrospinning of ε-polycaprolactone-bioactive glass hybrid biomaterials via a sol-gel process.

Allo BA, Rizkalla AS, Mequanint K.

Langmuir. 2010 Dec 7;26(23):18340-8. doi: 10.1021/la102845k. Epub 2010 Nov 4.

PMID:
21050002
9.

Uniformly-dispersed nanohydroxapatite-reinforced poly(ε-caprolactone) composite films for tendon tissue engineering application.

Tong SY, Wang Z, Lim PN, Wang W, Thian ES.

Mater Sci Eng C Mater Biol Appl. 2017 Jan 1;70(Pt 2):1149-1155. doi: 10.1016/j.msec.2016.03.051. Epub 2016 Mar 18.

PMID:
27772716
10.

Development of an osteoconductive PCL-PDIPF-hydroxyapatite composite scaffold for bone tissue engineering.

Fernandez JM, Molinuevo MS, Cortizo MS, Cortizo AM.

J Tissue Eng Regen Med. 2011 Jun;5(6):e126-35. doi: 10.1002/term.394. Epub 2011 Feb 10.

PMID:
21312338
11.

PCL-coated hydroxyapatite scaffold derived from cuttlefish bone: morphology, mechanical properties and bioactivity.

Milovac D, Gallego Ferrer G, Ivankovic M, Ivankovic H.

Mater Sci Eng C Mater Biol Appl. 2014 Jan 1;34:437-45. doi: 10.1016/j.msec.2013.09.036. Epub 2013 Oct 5.

PMID:
24268280
12.

Effects of bioactive glass nanoparticles on the mechanical and biological behavior of composite coated scaffolds.

Roohani-Esfahani SI, Nouri-Khorasani S, Lu ZF, Appleyard RC, Zreiqat H.

Acta Biomater. 2011 Mar;7(3):1307-18. doi: 10.1016/j.actbio.2010.10.015. Epub 2010 Nov 10.

PMID:
20971219
13.

Fabrication and characterization of poly-(ε)-caprolactone and bioactive glass composites for tissue engineering applications.

Mohammadkhah A, Marquardt LM, Sakiyama-Elbert SE, Day DE, Harkins AB.

Mater Sci Eng C Mater Biol Appl. 2015 Apr;49:632-9. doi: 10.1016/j.msec.2015.01.060. Epub 2015 Jan 16.

PMID:
25686992
14.

Hydroxyapatite formation on sol-gel derived poly(ε-caprolactone)/bioactive glass hybrid biomaterials.

Allo BA, Rizkalla AS, Mequanint K.

ACS Appl Mater Interfaces. 2012 Jun 27;4(6):3148-56. doi: 10.1021/am300487c. Epub 2012 Jun 4.

PMID:
22625179
15.

Comparison of nanoscale and microscale bioactive glass on the properties of P(3HB)/Bioglass composites.

Misra SK, Mohn D, Brunner TJ, Stark WJ, Philip SE, Roy I, Salih V, Knowles JC, Boccaccini AR.

Biomaterials. 2008 Apr;29(12):1750-61. doi: 10.1016/j.biomaterials.2007.12.040. Epub 2008 Feb 6.

PMID:
18255139
16.

Embedded silica nanoparticles in poly(caprolactone) nanofibrous scaffolds enhanced osteogenic potential for bone tissue engineering.

Ganesh N, Jayakumar R, Koyakutty M, Mony U, Nair SV.

Tissue Eng Part A. 2012 Sep;18(17-18):1867-81. doi: 10.1089/ten.TEA.2012.0167.

PMID:
22725098
17.

Perovskite ceramic nanoparticles in polymer composites for augmenting bone tissue regeneration.

Bagchi A, Meka SR, Rao BN, Chatterjee K.

Nanotechnology. 2014 Dec 5;25(48):485101. doi: 10.1088/0957-4484/25/48/485101. Epub 2014 Nov 7.

PMID:
25379989
18.

Mechanical properties and in vitro cellular behavior of zinc-containing nano-bioactive glass doped biphasic calcium phosphate bone substitutes.

Badr-Mohammadi MR, Hesaraki S, Zamanian A.

J Mater Sci Mater Med. 2014 Jan;25(1):185-97. doi: 10.1007/s10856-013-5062-7. Epub 2013 Oct 8.

PMID:
24101184
19.

Preparation and bioactive properties of novel bone-repair bionanocomposites based on hydroxyapatite and bioactive glass nanoparticles.

Valenzuela F, Covarrubias C, Martínez C, Smith P, Díaz-Dosque M, Yazdani-Pedram M.

J Biomed Mater Res B Appl Biomater. 2012 Aug;100(6):1672-82. doi: 10.1002/jbm.b.32736. Epub 2012 Jun 15.

PMID:
22707209
20.

In vitro response of human osteoblasts to multi-step sol-gel derived bioactive glass nanoparticles for bone tissue engineering.

Fan JP, Kalia P, Di Silvio L, Huang J.

Mater Sci Eng C Mater Biol Appl. 2014 Mar 1;36:206-14. doi: 10.1016/j.msec.2013.12.009. Epub 2013 Dec 15.

PMID:
24433905

Supplemental Content

Support Center