Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 115

1.

3D reconstitution of nerve-blood vessel networks using skeletal muscle-derived multipotent stem cell sheet pellets.

Tamaki T, Soeda S, Hashimoto H, Saito K, Sakai A, Nakajima N, Masuda M, Fukunishi N, Uchiyama Y, Terachi T, Mochida J.

Regen Med. 2013 Jul;8(4):437-51. doi: 10.2217/rme.13.30.

PMID:
23826698
2.

Reconstruction of Multiple Facial Nerve Branches Using Skeletal Muscle-Derived Multipotent Stem Cell Sheet-Pellet Transplantation.

Saito K, Tamaki T, Hirata M, Hashimoto H, Nakazato K, Nakajima N, Kazuno A, Sakai A, Iida M, Okami K.

PLoS One. 2015 Sep 15;10(9):e0138371. doi: 10.1371/journal.pone.0138371. eCollection 2015.

3.

Preferential and comprehensive reconstitution of severely damaged sciatic nerve using murine skeletal muscle-derived multipotent stem cells.

Tamaki T, Hirata M, Soeda S, Nakajima N, Saito K, Nakazato K, Okada Y, Hashimoto H, Uchiyama Y, Mochida J.

PLoS One. 2014 Mar 10;9(3):e91257. doi: 10.1371/journal.pone.0091257. eCollection 2014.

4.

Functional recovery of damaged skeletal muscle through synchronized vasculogenesis, myogenesis, and neurogenesis by muscle-derived stem cells.

Tamaki T, Uchiyama Y, Okada Y, Ishikawa T, Sato M, Akatsuka A, Asahara T.

Circulation. 2005 Nov 1;112(18):2857-66. Epub 2005 Oct 24.

5.

Clonal multipotency of skeletal muscle-derived stem cells between mesodermal and ectodermal lineage.

Tamaki T, Okada Y, Uchiyama Y, Tono K, Masuda M, Wada M, Hoshi A, Ishikawa T, Akatsuka A.

Stem Cells. 2007 Sep;25(9):2283-90. Epub 2007 Jun 21.

6.

Cardiomyocyte formation by skeletal muscle-derived multi-myogenic stem cells after transplantation into infarcted myocardium.

Tamaki T, Akatsuka A, Okada Y, Uchiyama Y, Tono K, Wada M, Hoshi A, Iwaguro H, Iwasaki H, Oyamada A, Asahara T.

PLoS One. 2008 Mar 12;3(3):e1789. doi: 10.1371/journal.pone.0001789.

7.

Reconstitution of the complete rupture in musculotendinous junction using skeletal muscle-derived multipotent stem cell sheet-pellets as a "bio-bond".

Hashimoto H, Tamaki T, Hirata M, Uchiyama Y, Sato M, Mochida J.

PeerJ. 2016 Jul 19;4:e2231. doi: 10.7717/peerj.2231. eCollection 2016.

8.

Reconstruction of radical prostatectomy-induced urethral damage using skeletal muscle-derived multipotent stem cells.

Hoshi A, Tamaki T, Tono K, Okada Y, Akatsuka A, Usui Y, Terachi T.

Transplantation. 2008 Jun 15;85(11):1617-24. doi: 10.1097/TP.0b013e318170572b.

PMID:
18551069
9.

Reconstitution of experimental neurogenic bladder dysfunction using skeletal muscle-derived multipotent stem cells.

Nitta M, Tamaki T, Tono K, Okada Y, Masuda M, Akatsuka A, Hoshi A, Usui Y, Terachi T.

Transplantation. 2010 May 15;89(9):1043-9. doi: 10.1097/TP.0b013e3181d45a7f.

PMID:
20150836
10.

Synchronized reconstitution of muscle fibers, peripheral nerves and blood vessels by murine skeletal muscle-derived CD34(-)/45 (-) cells.

Tamaki T, Okada Y, Uchiyama Y, Tono K, Masuda M, Wada M, Hoshi A, Akatsuka A.

Histochem Cell Biol. 2007 Oct;128(4):349-60. Epub 2007 Aug 29.

PMID:
17762938
11.

Dermal substitutes support the growth of human skin-derived mesenchymal stromal cells: potential tool for skin regeneration.

Jeremias Tda S, Machado RG, Visoni SB, Pereima MJ, Leonardi DF, Trentin AG.

PLoS One. 2014 Feb 26;9(2):e89542. doi: 10.1371/journal.pone.0089542. eCollection 2014.

12.

Eccentric exercise facilitates mesenchymal stem cell appearance in skeletal muscle.

Valero MC, Huntsman HD, Liu J, Zou K, Boppart MD.

PLoS One. 2012;7(1):e29760. doi: 10.1371/journal.pone.0029760. Epub 2012 Jan 11.

13.

Muscle-derived stem cells.

Cao B, Huard J.

Cell Cycle. 2004 Feb;3(2):104-7. Review.

PMID:
14712064
14.

Uraemia disrupts the vascular niche in a 3D co-culture system of human mesenchymal stem cells and endothelial cells.

Kramann R, Couson SK, Neuss S, Floege J, Knüchel R, Schneider RK.

Nephrol Dial Transplant. 2012 Jul;27(7):2693-702. doi: 10.1093/ndt/gfr656. Epub 2011 Dec 29.

PMID:
22207324
15.

Purified Human Skeletal Muscle-Derived Stem Cells Enhance the Repair and Regeneration in the Damaged Urethra.

Nakajima N, Tamaki T, Hirata M, Soeda S, Nitta M, Hoshi A, Terachi T.

Transplantation. 2017 Oct;101(10):2312-2320. doi: 10.1097/TP.0000000000001613.

PMID:
28027190
16.

Analysis of the neurogenic potential of multipotent skin-derived precursors.

Fernandes KJ, Kobayashi NR, Gallagher CJ, Barnabé-Heider F, Aumont A, Kaplan DR, Miller FD.

Exp Neurol. 2006 Sep;201(1):32-48. Epub 2006 May 5.

PMID:
16678161
17.

Tissue-engineered nerve constructs under a microgravity system for peripheral nerve regeneration.

Luo H, Zhu B, Zhang Y, Jin Y.

Tissue Eng Part A. 2015 Jan;21(1-2):267-76. doi: 10.1089/ten.TEA.2013.0565. Epub 2014 Sep 16.

PMID:
25088840
18.

Purification and long-term culture of multipotent progenitor cells affiliated with the walls of human blood vessels: myoendothelial cells and pericytes.

Crisan M, Deasy B, Gavina M, Zheng B, Huard J, Lazzari L, Péault B.

Methods Cell Biol. 2008;86:295-309. doi: 10.1016/S0091-679X(08)00013-7.

PMID:
18442653
19.

A Long-Gap Peripheral Nerve Injury Therapy Using Human Skeletal Muscle-Derived Stem Cells (Sk-SCs): An Achievement of Significant Morphological, Numerical and Functional Recovery.

Tamaki T, Hirata M, Nakajima N, Saito K, Hashimoto H, Soeda S, Uchiyama Y, Watanabe M.

PLoS One. 2016 Nov 15;11(11):e0166639. doi: 10.1371/journal.pone.0166639. eCollection 2016.

20.

Clone-derived human AF-amniotic fluid stem cells are capable of skeletal myogenic differentiation in vitro and in vivo.

Ma X, Zhang S, Zhou J, Chen B, Shang Y, Gao T, Wang X, Xie H, Chen F.

J Tissue Eng Regen Med. 2012 Aug;6(8):598-613. doi: 10.1002/term.462. Epub 2012 Mar 7.

PMID:
22396316

Supplemental Content

Support Center