Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 178

1.

Electrospun collagen-poly(L-lactic acid-co-ε-caprolactone) membranes for cartilage tissue engineering.

He X, Fu W, Feng B, Wang H, Liu Z, Yin M, Wang W, Zheng J.

Regen Med. 2013 Jul;8(4):425-36. doi: 10.2217/rme.13.29.

PMID:
23826697
2.

Electrospun collagen/poly(L-lactic acid-co-epsilon-caprolactone) hybrid nanofibrous membranes combining with sandwich construction model for cartilage tissue engineering.

He X, Fu W, Feng B, Wang H, Liu Z, Yin M, Wang W, Zheng J.

J Nanosci Nanotechnol. 2013 Jun;13(6):3818-25.

PMID:
23862413
3.

Application of an elastic biodegradable poly(L-lactide-co-epsilon-caprolactone) scaffold for cartilage tissue regeneration.

Jung Y, Kim SH, You HJ, Kim SH, Kim YH, Min BG.

J Biomater Sci Polym Ed. 2008;19(8):1073-85. doi: 10.1163/156856208784909336.

PMID:
18644232
4.

Poly (l-lactide-co-caprolactone) scaffolds enhanced with poly (β-hydroxybutyrate-co-β-hydroxyvalerate) microspheres for cartilage regeneration.

Li C, Zhang J, Li Y, Moran S, Khang G, Ge Z.

Biomed Mater. 2013 Apr;8(2):025005. doi: 10.1088/1748-6041/8/2/025005. Epub 2013 Feb 5.

PMID:
23385654
5.

Electrospun gelatin/PCL and collagen/PLCL scaffolds for vascular tissue engineering.

Fu W, Liu Z, Feng B, Hu R, He X, Wang H, Yin M, Huang H, Zhang H, Wang W.

Int J Nanomedicine. 2014 May 13;9:2335-44. doi: 10.2147/IJN.S61375. eCollection 2014.

PMID:
24872696
6.

Rat costochondral cell characteristics on poly (L-lactide-co-epsilon-caprolactone) scaffolds.

Honda M, Morikawa N, Hata K, Yada T, Morita S, Ueda M, Kimata K.

Biomaterials. 2003 Sep;24(20):3511-9.

PMID:
12809780
7.

A viscoelastic chitosan-modified three-dimensional porous poly(L-lactide-co-ε-caprolactone) scaffold for cartilage tissue engineering.

Li C, Wang L, Yang Z, Kim G, Chen H, Ge Z.

J Biomater Sci Polym Ed. 2012;23(1-4):405-24. doi: 10.1163/092050610X551970. Epub 2011 Feb 7.

PMID:
21310105
8.

Articular cartilage tissue engineering based on a mechano-active scaffold made of poly(L-lactide-co-epsilon-caprolactone): In vivo performance in adult rabbits.

Xie J, Han Z, Naito M, Maeyama A, Kim SH, Kim YH, Matsuda T.

J Biomed Mater Res B Appl Biomater. 2010 Jul;94(1):80-8. doi: 10.1002/jbm.b.31627.

PMID:
20336738
9.

Cartilaginous tissue formation using a mechano-active scaffold and dynamic compressive stimulation.

Jung Y, Kim SH, Kim SH, Kim YH, Xie J, Matsuda T, Min BG.

J Biomater Sci Polym Ed. 2008;19(1):61-74. doi: 10.1163/156856208783227712.

PMID:
18177554
10.

Improved mesenchymal stem cells attachment and in vitro cartilage tissue formation on chitosan-modified poly(L-lactide-co-epsilon-caprolactone) scaffold.

Yang Z, Wu Y, Li C, Zhang T, Zou Y, Hui JH, Ge Z, Lee EH.

Tissue Eng Part A. 2012 Feb;18(3-4):242-51. doi: 10.1089/ten.TEA.2011.0315. Epub 2011 Dec 22.

PMID:
21902611
11.

A biocompatible tissue scaffold produced by supercritical fluid processing for cartilage tissue engineering.

Kim SH, Jung Y, Kim SH.

Tissue Eng Part C Methods. 2013 Mar;19(3):181-8. doi: 10.1089/ten.TEC.2012.0170. Epub 2012 Sep 7.

PMID:
22834918
12.

Selective laser sintered poly-ε-caprolactone scaffold hybridized with collagen hydrogel for cartilage tissue engineering.

Chen CH, Shyu VB, Chen JP, Lee MY.

Biofabrication. 2014 Mar;6(1):015004. doi: 10.1088/1758-5082/6/1/015004. Epub 2014 Jan 15.

PMID:
24429581
13.

Electrospun gelatin/polycaprolactone nanofibrous membranes combined with a coculture of bone marrow stromal cells and chondrocytes for cartilage engineering.

He X, Feng B, Huang C, Wang H, Ge Y, Hu R, Yin M, Xu Z, Wang W, Fu W, Zheng J.

Int J Nanomedicine. 2015 Mar 17;10:2089-99. doi: 10.2147/IJN.S79461. eCollection 2015.

PMID:
25834428
14.

Cartilage regeneration with highly-elastic three-dimensional scaffolds prepared from biodegradable poly(L-lactide-co-epsilon-caprolactone).

Jung Y, Park MS, Lee JW, Kim YH, Kim SH, Kim SH.

Biomaterials. 2008 Dec;29(35):4630-6. doi: 10.1016/j.biomaterials.2008.08.031. Epub 2008 Sep 18.

PMID:
18804279
15.

Evaluation of type II collagen scaffolds reinforced by poly(epsilon-caprolactone) as tissue-engineered trachea.

Lin CH, Su JM, Hsu SH.

Tissue Eng Part C Methods. 2008 Mar;14(1):69-77. doi: 10.1089/tec.2007.0336.

PMID:
18454647
16.

The effect of hybridization of hydrogels and poly(L-lactide-co-epsilon-caprolactone) scaffolds on cartilage tissue engineering.

Jung Y, Kim SH, Kim YH, Kim SH.

J Biomater Sci Polym Ed. 2010;21(5):581-92. doi: 10.1163/156856209X430579.

PMID:
20338093
17.

Tissue engineering of an auricular cartilage model utilizing cultured chondrocyte-poly(L-lactide-epsilon-caprolactone) scaffolds.

Isogai N, Asamura S, Higashi T, Ikada Y, Morita S, Hillyer J, Jacquet R, Landis WJ.

Tissue Eng. 2004 May-Jun;10(5-6):673-87.

PMID:
15265285
18.

The effect of gelatin incorporation into electrospun poly(L-lactide-co-epsilon-caprolactone) fibers on mechanical properties and cytocompatibility.

Lee J, Tae G, Kim YH, Park IS, Kim SH, Kim SH.

Biomaterials. 2008 Apr;29(12):1872-9. doi: 10.1016/j.biomaterials.2007.12.029. Epub 2008 Jan 29.

PMID:
18234330
19.

Cartilage formation by serial passaged cultured chondrocytes in a new scaffold: hybrid 75:25 poly(L-lactide-epsilon-caprolactone) sponge.

Honda MJ, Yada T, Ueda M, Kimata K.

J Oral Maxillofac Surg. 2004 Dec;62(12):1510-6.

PMID:
15573351
20.

The effects of dynamic and three-dimensional environments on chondrogenic differentiation of bone marrow stromal cells.

Jung Y, Kim SH, Kim YH, Kim SH.

Biomed Mater. 2009 Oct;4(5):055009. doi: 10.1088/1748-6041/4/5/055009. Epub 2009 Sep 25.

PMID:
19779251

Supplemental Content

Support Center