Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 151

1.

Salt-assisted direct exfoliation of graphite into high-quality, large-size, few-layer graphene sheets.

Niu L, Li M, Tao X, Xie Z, Zhou X, Raju AP, Young RJ, Zheng Z.

Nanoscale. 2013 Aug 21;5(16):7202-8. doi: 10.1039/c3nr02173d.

PMID:
23824229
2.

High-quality thin graphene films from fast electrochemical exfoliation.

Su CY, Lu AY, Xu Y, Chen FR, Khlobystov AN, Li LJ.

ACS Nano. 2011 Mar 22;5(3):2332-9. doi: 10.1021/nn200025p. Epub 2011 Feb 10.

PMID:
21309565
3.

Factors controlling the size of graphene oxide sheets produced via the graphite oxide route.

Pan S, Aksay IA.

ACS Nano. 2011 May 24;5(5):4073-83. doi: 10.1021/nn200666r. Epub 2011 Apr 19.

PMID:
21469697
4.

Aqueous Dispersions of Graphene from Electrochemically Exfoliated Graphite.

Sevilla M, Ferrero GA, Fuertes AB.

Chemistry. 2016 Nov 21;22(48):17351-17358. doi: 10.1002/chem.201603321. Epub 2016 Oct 24.

PMID:
27775199
5.

Graphene Oxide-Assisted Liquid Phase Exfoliation of Graphite into Graphene for Highly Conductive Film and Electromechanical Sensors.

Tung TT, Yoo J, Alotaibi FK, Nine MJ, Karunagaran R, Krebsz M, Nguyen GT, Tran DN, Feller JF, Losic D.

ACS Appl Mater Interfaces. 2016 Jun 29;8(25):16521-32. doi: 10.1021/acsami.6b04872. Epub 2016 Jun 15.

PMID:
27268515
6.

Environmental Synthesis of Few Layers Graphene Sheets Using Ultrasonic Exfoliation with Enhanced Electrical and Thermal Properties.

Noroozi M, Zakaria A, Radiman S, Abdul Wahab Z.

PLoS One. 2016 Apr 11;11(4):e0152699. doi: 10.1371/journal.pone.0152699. eCollection 2016.

7.

Electrochemically exfoliated graphene as solution-processable, highly conductive electrodes for organic electronics.

Parvez K, Li R, Puniredd SR, Hernandez Y, Hinkel F, Wang S, Feng X, Müllen K.

ACS Nano. 2013 Apr 23;7(4):3598-606. doi: 10.1021/nn400576v. Epub 2013 Apr 2.

PMID:
23531157
8.

Direct exfoliation of natural graphite into micrometre size few layers graphene sheets using ionic liquids.

Wang X, Fulvio PF, Baker GA, Veith GM, Unocic RR, Mahurin SM, Chi M, Dai S.

Chem Commun (Camb). 2010 Jul 7;46(25):4487-9. doi: 10.1039/c0cc00799d. Epub 2010 May 19.

PMID:
20485780
9.

Production of large graphene sheets by exfoliation of graphite under high power ultrasound in the presence of tiopronin.

Quintana M, Grzelczak M, Spyrou K, Kooi B, Bals S, Van Tendeloo G, Rudolf P, Prato M.

Chem Commun (Camb). 2012 Dec 28;48(100):12159-61. doi: 10.1039/c2cc35298b.

PMID:
23091819
10.

High-yield synthesis of few-layer graphene flakes through electrochemical expansion of graphite in propylene carbonate electrolyte.

Wang J, Manga KK, Bao Q, Loh KP.

J Am Chem Soc. 2011 Jun 15;133(23):8888-91. doi: 10.1021/ja203725d. Epub 2011 May 17.

PMID:
21557613
11.

Exfoliation of non-oxidized graphene flakes for scalable conductive film.

Park KH, Kim BH, Song SH, Kwon J, Kong BS, Kang K, Jeon S.

Nano Lett. 2012 Jun 13;12(6):2871-6. doi: 10.1021/nl3004732. Epub 2012 May 24.

PMID:
22616737
12.

Direct imaging of rotational stacking faults in few layer graphene.

Warner JH, Rümmeli MH, Gemming T, Büchner B, Briggs GA.

Nano Lett. 2009 Jan;9(1):102-6. doi: 10.1021/nl8025949.

PMID:
19072722
13.

Deconstructing graphite: graphenide solutions.

Pénicaud A, Drummond C.

Acc Chem Res. 2013 Jan 15;46(1):129-37. doi: 10.1021/ar300141s. Epub 2012 Oct 25.

PMID:
23316681
14.

Electrostatic force assisted exfoliation of prepatterned few-layer graphenes into device sites.

Liang X, Chang AS, Zhang Y, Harteneck BD, Choo H, Olynick DL, Cabrini S.

Nano Lett. 2009 Jan;9(1):467-72. doi: 10.1021/nl803512z. Erratum in: Nano Lett. 2009 Feb;9(2):919.

PMID:
19072062
15.

Processable aqueous dispersions of graphene nanosheets.

Li D, Müller MB, Gilje S, Kaner RB, Wallace GG.

Nat Nanotechnol. 2008 Feb;3(2):101-5. doi: 10.1038/nnano.2007.451. Epub 2008 Jan 27.

PMID:
18654470
16.

Functional single-layer graphene sheets from aromatic monolayers.

Matei DG, Weber NE, Kurasch S, Wundrack S, Woszczyna M, Grothe M, Weimann T, Ahlers F, Stosch R, Kaiser U, Turchanin A.

Adv Mater. 2013 Aug 14;25(30):4146-51. doi: 10.1002/adma.201300651. Epub 2013 May 29.

PMID:
23716462
17.

Stable aqueous dispersions of noncovalently functionalized graphene from graphite and their multifunctional high-performance applications.

An X, Simmons T, Shah R, Wolfe C, Lewis KM, Washington M, Nayak SK, Talapatra S, Kar S.

Nano Lett. 2010 Nov 10;10(11):4295-301. doi: 10.1021/nl903557p. Epub 2010 Jun 17.

PMID:
20557029
18.

An electrochemical route to graphene oxide.

You X, Chang JH, Ju BK, Pak JJ.

J Nanosci Nanotechnol. 2011 Jul;11(7):5965-8.

PMID:
22121640
19.

Adsorption of phenanthrene on multilayer graphene as affected by surfactant and exfoliation.

Zhao J, Wang Z, Zhao Q, Xing B.

Environ Sci Technol. 2014;48(1):331-9. doi: 10.1021/es403873r. Epub 2013 Dec 23.

PMID:
24328362
20.

Direct exfoliation of graphite in water with addition of ammonia solution.

Ma H, Shen Z, Yi M, Ben S, Liang S, Liu L, Zhang Y, Zhang X, Ma S.

J Colloid Interface Sci. 2017 Apr 24;503:68-75. doi: 10.1016/j.jcis.2017.04.070. [Epub ahead of print]

PMID:
28500941

Supplemental Content

Support Center