Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 142

1.

Xylooligosaccharides from hardwood and cereal xylans produced by a thermostable xylanase as carbon sources for Lactobacillus brevis and Bifidobacterium adolescentis.

Falck P, Precha-Atsawanan S, Grey C, Immerzeel P, Stålbrand H, Adlercreutz P, Karlsson EN.

J Agric Food Chem. 2013 Jul 31;61(30):7333-40. doi: 10.1021/jf401249g. Epub 2013 Jul 23. Erratum in: J Agric Food Chem. 2013 Dec 26;61(51):12744.

PMID:
23822770
2.

Fermentation of xylo-oligosaccharides by Bifidobacterium adolescentis DSMZ 18350: kinetics, metabolism, and β-xylosidase activities.

Amaretti A, Bernardi T, Leonardi A, Raimondi S, Zanoni S, Rossi M.

Appl Microbiol Biotechnol. 2013 Apr;97(7):3109-17. doi: 10.1007/s00253-012-4509-y. Epub 2012 Oct 26.

PMID:
23099913
3.

Production of xylooligosaccharides from corncob xylan by fungal xylanase and their utilization by probiotics.

Chapla D, Pandit P, Shah A.

Bioresour Technol. 2012 Jul;115:215-21. doi: 10.1016/j.biortech.2011.10.083. Epub 2011 Oct 31.

PMID:
22100233
4.

Paenibacillus curdlanolyticus B-6 xylanase Xyn10C capable of producing a doubly arabinose-substituted xylose, α-L-Araf-(1→2)-[α-L-Araf-(1→3)]-D-Xylp, from rye arabinoxylan.

Imjongjairak S, Jommuengbout P, Karpilanondh P, Katsuzaki H, Sakka M, Kimura T, Pason P, Tachaapaikoon C, Romsaiyud J, Ratanakhanokchai K, Sakka K.

Enzyme Microb Technol. 2015 May;72:1-9. doi: 10.1016/j.enzmictec.2015.02.002. Epub 2015 Feb 13.

PMID:
25837501
5.

In vitro fermentation of arabinoxylan-derived carbohydrates by bifidobacteria and mixed fecal microbiota.

Pastell H, Westermann P, Meyer AS, Tuomainen P, Tenkanen M.

J Agric Food Chem. 2009 Sep 23;57(18):8598-606. doi: 10.1021/jf901397b.

PMID:
19694435
6.

Production of arabinoxylan-oligosaccharide mixtures of varying composition from rye bran by a combination of process conditions and type of xylanase.

Falck P, Aronsson A, Grey C, Stålbrand H, Nordberg Karlsson E, Adlercreutz P.

Bioresour Technol. 2014 Dec;174:118-25. doi: 10.1016/j.biortech.2014.09.139. Epub 2014 Oct 7.

PMID:
25463790
7.

Assessment on the fermentability of xylooligosaccharides from rice husks by probiotic bacteria.

Gullón P, Moura P, Esteves MP, Girio FM, Domínguez H, Parajó JC.

J Agric Food Chem. 2008 Aug 27;56(16):7482-7. doi: 10.1021/jf800715b. Epub 2008 Jul 22.

PMID:
18642926
8.

Biological Activities of xylooligosaccharides generated from garlic straw xylan by purified xylanase from Bacillus mojavensis UEB-FK.

Kallel F, Driss D, Chaabouni SE, Ghorbel R.

Appl Biochem Biotechnol. 2015 Jan;175(2):950-64. doi: 10.1007/s12010-014-1308-1. Epub 2014 Oct 29.

PMID:
25351626
9.

Characterization of two β-xylosidases from Bifidobacterium adolescentis and their contribution to the hydrolysis of prebiotic xylooligosaccharides.

Lagaert S, Pollet A, Delcour JA, Lavigne R, Courtin CM, Volckaert G.

Appl Microbiol Biotechnol. 2011 Dec;92(6):1179-85. doi: 10.1007/s00253-011-3396-y. Epub 2011 Jun 21.

PMID:
21691791
10.

A typical endo-xylanase from Streptomyces rameus L2001 and its unique characteristics in xylooligosaccharide production.

Li X, Li E, Zhu Y, Teng C, Sun B, Song H, Yang R.

Carbohydr Res. 2012 Oct 1;359:30-6. doi: 10.1016/j.carres.2012.05.005. Epub 2012 May 11.

PMID:
22925761
11.

Xylo-oligosaccharides enhance the growth of bifidobacteria and Bifidobacterium lactis in a simulated colon model.

Mäkeläinen H, Forssten S, Saarinen M, Stowell J, Rautonen N, Ouwehand AC.

Benef Microbes. 2010 Mar;1(1):81-91. doi: 10.3920/BM2009.0025.

PMID:
21831753
12.
13.

GH10 xylanase D from Penicillium funiculosum: biochemical studies and xylooligosaccharide production.

Lafond M, Tauzin A, Desseaux V, Bonnin E, Ajandouz el-H, Giardina T.

Microb Cell Fact. 2011 Apr 5;10:20. doi: 10.1186/1475-2859-10-20.

14.

Simultaneous production of endo-beta-1,4-xylanase and branched xylooligosaccharides by Thermomyces lanuginosus.

Puchart V, Biely P.

J Biotechnol. 2008 Oct 10;137(1-4):34-43. doi: 10.1016/j.jbiotec.2008.07.1789. Epub 2008 Jul 16.

PMID:
18680769
15.

Arabinoxylan oligosaccharide hydrolysis by family 43 and 51 glycosidases from Lactobacillus brevis DSM 20054.

Michlmayr H, Hell J, Lorenz C, Böhmdorfer S, Rosenau T, Kneifel W.

Appl Environ Microbiol. 2013 Nov;79(21):6747-54. doi: 10.1128/AEM.02130-13. Epub 2013 Aug 30.

16.

Distinct roles of carbohydrate esterase family CE16 acetyl esterases and polymer-acting acetyl xylan esterases in xylan deacetylation.

Koutaniemi S, van Gool MP, Juvonen M, Jokela J, Hinz SW, Schols HA, Tenkanen M.

J Biotechnol. 2013 Dec;168(4):684-92. doi: 10.1016/j.jbiotec.2013.10.009. Epub 2013 Oct 18.

PMID:
24140638
17.

Prebiotic and other health-related effects of cereal-derived arabinoxylans, arabinoxylan-oligosaccharides, and xylooligosaccharides.

Broekaert WF, Courtin CM, Verbeke K, Van de Wiele T, Verstraete W, Delcour JA.

Crit Rev Food Sci Nutr. 2011 Feb;51(2):178-94. doi: 10.1080/10408390903044768. Review.

PMID:
21328111
18.

A Comparison of Polysaccharide Substrates and Reducing Sugar Methods for the Measurement of endo-1,4-β-Xylanase.

McCleary BV, McGeough P.

Appl Biochem Biotechnol. 2015 Nov;177(5):1152-63. doi: 10.1007/s12010-015-1803-z. Epub 2015 Aug 20.

19.

Production and optimization of xylooligosaccharides from corncob by Bacillus aerophilus KGJ2 xylanase and its antioxidant potential.

Gowdhaman D, Ponnusami V.

Int J Biol Macromol. 2015 Aug;79:595-600. doi: 10.1016/j.ijbiomac.2015.05.046. Epub 2015 May 30.

PMID:
26038103
20.

Oat beta-glucan and xylan hydrolysates as selective substrates for Bifidobacterium and Lactobacillus strains.

Jaskari J, Kontula P, Siitonen A, Jousimies-Somer H, Mattila-Sandholm T, Poutanen K.

Appl Microbiol Biotechnol. 1998 Feb;49(2):175-81.

PMID:
9534257
Items per page

Supplemental Content

Write to the Help Desk