Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 64

1.

Chemical patterns in translating vortices: inter- and intra-cellular mixing effects.

Vallatos A, Evans R, Thompson BW, Taylor AF, Britton MM.

Chaos. 2013 Jun;23(2):023115. doi: 10.1063/1.4807619.

PMID:
23822480
2.

Pattern formation in a reaction-diffusion-advection system with wave instability.

Berenstein I.

Chaos. 2012 Jun;22(2):023112. doi: 10.1063/1.4704809.

PMID:
22757519
3.

Flow-induced control of chemical turbulence.

Berenstein I, Beta C.

J Chem Phys. 2011 Oct 28;135(16):164901. doi: 10.1063/1.3656248.

PMID:
22047263
4.

Flow-distributed oscillations: stationary chemical waves in a reacting flow.

Kaern M, Menzinger M.

Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1999 Oct;60(4 Pt A):R3471-4.

PMID:
11970260
5.

Experimental studies of pattern formation in a reaction-advection-diffusion system.

Nugent CR, Quarles WM, Solomon TH.

Phys Rev Lett. 2004 Nov 19;93(21):218301. Epub 2004 Nov 18.

PMID:
15601066
6.

Transition to mixing and oscillations in a Stokesian viscoelastic flow.

Thomases B, Shelley M.

Phys Rev Lett. 2009 Aug 28;103(9):094501. Epub 2009 Aug 26.

PMID:
19792800
7.

Bromide control, bifurcation and activation in the Belousov-Zhabotinsky reaction.

Hastings HM, Sobel SG, Field RJ, Bongiovi D, Burke B, Richford D, Finzel K, Garuthara M.

J Phys Chem A. 2008 May 29;112(21):4715-8. doi: 10.1021/jp8019073. Epub 2008 May 7.

PMID:
18459756
8.

Complex mixed-mode oscillatory patterns in a periodically forced excitable Belousov-Zhabotinsky reaction model.

Español MI, Rotstein HG.

Chaos. 2015 Jun;25(6):064612. doi: 10.1063/1.4922715.

PMID:
26117137
9.

Influence of oscillatory centrifugal forces on the mechanism of Turing pattern formation.

Guiu-Souto J, Muñuzuri AP.

Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Jan;91(1):012917. Epub 2015 Jan 21.

PMID:
25679692
10.

Cross-diffusion in the two-variable Oregonator model.

Berenstein I, Beta C.

Chaos. 2013 Sep;23(3):033119. doi: 10.1063/1.4816937.

PMID:
24089955
11.

"Black spots" in a surfactant-rich Belousov-Zhabotinsky reaction dispersed in a water-in-oil microemulsion system.

Kaminaga A, Vanag VK, Epstein IR.

J Chem Phys. 2005 May 1;122(17):174706.

PMID:
15910059
12.

Temperature dependence of the Oregonator model for the Belousov-Zhabotinsky reaction.

Pullela SR, Cristancho D, He P, Luo D, Hall KR, Cheng Z.

Phys Chem Chem Phys. 2009 Jun 7;11(21):4236-43. doi: 10.1039/b820464k. Epub 2009 Mar 17.

PMID:
19458825
13.

Phase wave between two oscillators in the photosensitive Belousov-Zhabotinsky reaction depending on the difference in the illumination time.

Nakata S, Kashima K, Kitahata H, Mori Y.

J Phys Chem A. 2010 Sep 2;114(34):9124-9. doi: 10.1021/jp105204n.

PMID:
20695485
14.

Stationary vortex loops induced by filament interaction and local pinning in a chemical reaction-diffusion system.

Jiménez ZA, Steinbock O.

Phys Rev Lett. 2012 Aug 31;109(9):098301. Epub 2012 Aug 27.

PMID:
23002890
15.

Photoexcited chemical wave in the ruthenium-catalyzed Belousov-Zhabotinsky reaction.

Nakata S, Matsushita M, Sato T, Suematsu NJ, Kitahata H, Amemiya T, Mori Y.

J Phys Chem A. 2011 Jul 7;115(26):7406-12. doi: 10.1021/jp2012057. Epub 2011 Jun 3.

PMID:
21563834
16.

Spontaneous spiral formation in two-dimensional oscillatory media.

Kettunen P, Amemiya T, Ohmori T, Yamaguchi T.

Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1999 Aug;60(2 Pt A):1512-5.

PMID:
11969911
17.

Coexistence of wave propagation and oscillation in the photosensitive Belousov-Zhabotinsky reaction on a circular route.

Nakata S, Morishima S, Ichino T, Kitahata H.

J Phys Chem A. 2006 Dec 21;110(50):13475-8.

PMID:
17165872
18.

Coupled and forced patterns in reaction-diffusion systems.

Epstein IR, Berenstein IB, Dolnik M, Vanag VK, Yang L, Zhabotinsky AM.

Philos Trans A Math Phys Eng Sci. 2008 Feb 13;366(1864):397-408.

19.

Comment on "Flow-induced arrest of spatiotemporal chaos and transition to a stationary pattern in the Gray-Scott model".

Berenstein I, Beta C, De Decker Y.

Phys Rev E. 2016 Oct;94(4-2):046201. Epub 2016 Oct 7.

PMID:
27841533
20.

Dynamic mechanisms of generation of oscillatory cluster patterns in a globally coupled chemical system.

Rotstein HG, Wu H.

J Chem Phys. 2012 Sep 14;137(10):104908. doi: 10.1063/1.4749792.

PMID:
22979891

Supplemental Content

Support Center