Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 127

1.

Heparan sulfate in skeletal development, growth, and pathology: the case of hereditary multiple exostoses.

Huegel J, Sgariglia F, Enomoto-Iwamoto M, Koyama E, Dormans JP, Pacifici M.

Dev Dyn. 2013 Sep;242(9):1021-32. doi: 10.1002/dvdy.24010. Epub 2013 Jul 29. Review.

2.

Perichondrium phenotype and border function are regulated by Ext1 and heparan sulfate in developing long bones: a mechanism likely deranged in Hereditary Multiple Exostoses.

Huegel J, Mundy C, Sgariglia F, Nygren P, Billings PC, Yamaguchi Y, Koyama E, Pacifici M.

Dev Biol. 2013 May 1;377(1):100-12. doi: 10.1016/j.ydbio.2013.02.008. Epub 2013 Mar 1.

3.

Etiological point mutations in the hereditary multiple exostoses gene EXT1: a functional analysis of heparan sulfate polymerase activity.

Cheung PK, McCormick C, Crawford BE, Esko JD, Tufaro F, Duncan G.

Am J Hum Genet. 2001 Jul;69(1):55-66. Epub 2001 Jun 5.

4.

Heparan sulfate abnormalities in exostosis growth plates.

Hecht JT, Hall CR, Snuggs M, Hayes E, Haynes R, Cole WG.

Bone. 2002 Jul;31(1):199-204.

PMID:
12110435
5.

Unsuspected osteochondroma-like outgrowths in the cranial base of Hereditary Multiple Exostoses patients and modeling and treatment with a BMP antagonist in mice.

Sinha S, Mundy C, Bechtold T, Sgariglia F, Ibrahim MM, Billings PC, Carroll K, Koyama E, Jones KB, Pacifici M.

PLoS Genet. 2017 Apr 26;13(4):e1006742. doi: 10.1371/journal.pgen.1006742. eCollection 2017 Apr.

6.

Epiphyseal abnormalities, trabecular bone loss and articular chondrocyte hypertrophy develop in the long bones of postnatal Ext1-deficient mice.

Sgariglia F, Candela ME, Huegel J, Jacenko O, Koyama E, Yamaguchi Y, Pacifici M, Enomoto-Iwamoto M.

Bone. 2013 Nov;57(1):220-31. doi: 10.1016/j.bone.2013.08.012. Epub 2013 Aug 17.

7.

Hereditary multiple exostoses and heparan sulfate polymerization.

Zak BM, Crawford BE, Esko JD.

Biochim Biophys Acta. 2002 Dec 19;1573(3):346-55. Review.

PMID:
12417417
8.

Multiple hereditary exostoses (MHE): elucidating the pathogenesis of a rare skeletal disorder through interdisciplinary research.

Jones KB, Pacifici M, Hilton MJ.

Connect Tissue Res. 2014 Apr;55(2):80-8. doi: 10.3109/03008207.2013.867957. Epub 2014 Feb 12.

PMID:
24409815
9.

Interactions of signaling proteins, growth factors and other proteins with heparan sulfate: mechanisms and mysteries.

Billings PC, Pacifici M.

Connect Tissue Res. 2015;56(4):272-80. doi: 10.3109/03008207.2015.1045066. Review.

10.

The pathogenic roles of heparan sulfate deficiency in hereditary multiple exostoses.

Pacifici M.

Matrix Biol. 2018 Oct;71-72:28-39. doi: 10.1016/j.matbio.2017.12.011. Epub 2017 Dec 24. Review.

PMID:
29277722
11.

Compound heterozygous loss of Ext1 and Ext2 is sufficient for formation of multiple exostoses in mouse ribs and long bones.

Zak BM, Schuksz M, Koyama E, Mundy C, Wells DE, Yamaguchi Y, Pacifici M, Esko JD.

Bone. 2011 May 1;48(5):979-87. doi: 10.1016/j.bone.2011.02.001. Epub 2011 Feb 15.

12.

Heparanase stimulates chondrogenesis and is up-regulated in human ectopic cartilage: a mechanism possibly involved in hereditary multiple exostoses.

Huegel J, Enomoto-Iwamoto M, Sgariglia F, Koyama E, Pacifici M.

Am J Pathol. 2015 Jun;185(6):1676-85. doi: 10.1016/j.ajpath.2015.02.014. Epub 2015 Apr 8.

13.

Reevaluation of a genetic model for the development of exostosis in hereditary multiple exostosis.

Hall CR, Cole WG, Haynes R, Hecht JT.

Am J Med Genet. 2002 Sep 15;112(1):1-5.

PMID:
12239711
14.

Differentiation-induced loss of heparan sulfate in human exostosis derived chondrocytes.

Hecht JT, Hayes E, Haynes R, Cole WG, Long RJ, Farach-Carson MC, Carson DD.

Differentiation. 2005 Jun;73(5):212-21.

PMID:
16026543
15.

Transgenic expression of the EXT2 gene in developing chondrocytes enhances the synthesis of heparan sulfate and bone formation in mice.

Morimoto K, Shimizu T, Furukawa K, Morio H, Kurosawa H, Shirasawa T.

Biochem Biophys Res Commun. 2002 Apr 12;292(4):999-1009.

PMID:
11944914
16.

Contribution of EXT1, EXT2, and EXTL3 to heparan sulfate chain elongation.

Busse M, Feta A, Presto J, Wilén M, Grønning M, Kjellén L, Kusche-Gullberg M.

J Biol Chem. 2007 Nov 9;282(45):32802-10. Epub 2007 Aug 29.

17.

Hereditary Multiple Exostoses: New Insights into Pathogenesis, Clinical Complications, and Potential Treatments.

Pacifici M.

Curr Osteoporos Rep. 2017 Jun;15(3):142-152. doi: 10.1007/s11914-017-0355-2. Review.

18.

Mice deficient in Ext2 lack heparan sulfate and develop exostoses.

Stickens D, Zak BM, Rougier N, Esko JD, Werb Z.

Development. 2005 Nov;132(22):5055-68. Epub 2005 Oct 19.

19.

Glycosaminoglycans in the blood of hereditary multiple exostoses patients: Half reduction of heparan sulfate to chondroitin sulfate ratio and the possible diagnostic application.

Anower-E-Khuda MF, Matsumoto K, Habuchi H, Morita H, Yokochi T, Shimizu K, Kimata K.

Glycobiology. 2013 Jul;23(7):865-76. doi: 10.1093/glycob/cwt024. Epub 2013 Mar 20.

PMID:
23514715
20.

Heparan sulphate biosynthesis and disease.

Nadanaka S, Kitagawa H.

J Biochem. 2008 Jul;144(1):7-14. doi: 10.1093/jb/mvn040. Epub 2008 Mar 26. Review.

PMID:
18367479

Supplemental Content

Support Center