Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 226

1.

Assessment of aortic valve pressure overload and leaflet functions in an ex vivo beating heart loaded with a continuous flow cardiac assist device.

Tuzun E, Pennings K, van Tuijl S, de Hart J, Stijnen M, van de Vosse F, de Mol B, Rutten M.

Eur J Cardiothorac Surg. 2014 Feb;45(2):377-83. doi: 10.1093/ejcts/ezt355.

PMID:
23818568
2.

Continuous-flow cardiac assistance: effects on aortic valve function in a mock loop.

Tuzun E, Rutten M, Dat M, van de Vosse F, Kadipasaoglu C, de Mol B.

J Surg Res. 2011 Dec;171(2):443-7. doi: 10.1016/j.jss.2010.05.040.

PMID:
20828746
3.

In vitro hemodynamic characterization of HeartMate II at 6000 rpm: Implications for weaning and recovery.

Sunagawa G, Byram N, Karimov JH, Horvath DJ, Moazami N, Starling RC, Fukamachi K.

J Thorac Cardiovasc Surg. 2015 Aug;150(2):343-8. doi: 10.1016/j.jtcvs.2015.04.015.

PMID:
26204865
4.

Extracorporeal membrane oxygenation versus counterpulsatile, pulsatile, and continuous left ventricular unloading for pediatric mechanical circulatory support.

Bartoli CR, Koenig SC, Ionan C, Gillars KJ, Mitchell ME, Austin EH 3rd, Gray LA, Pantalos GM.

Pediatr Crit Care Med. 2013 Nov;14(9):e424-37. doi: 10.1097/PCC.0b013e3182a551b0.

5.

Aortic Valve Function Under Support of a Left Ventricular Assist Device: Continuous vs. Dynamic Speed Support.

Bozkurt S, van de Vosse FN, Rutten MC.

Ann Biomed Eng. 2015 Aug;43(8):1727-37. doi: 10.1007/s10439-014-1204-4.

PMID:
25480480
6.

Biomechanics of the aortic valve in the continuous flow VAD-assisted heart.

May-Newman K, Enriquez-Almaguer L, Posuwattanakul P, Dembitsky W.

ASAIO J. 2010 Jul-Aug;56(4):301-8. doi: 10.1097/MAT.0b013e3181e321da.

PMID:
20559132
7.

Natural history and clinical effect of aortic valve regurgitation after left ventricular assist device implantation.

Rajagopal K, Daneshmand MA, Patel CB, Ganapathi AM, Schechter MA, Rogers JG, Milano CA.

J Thorac Cardiovasc Surg. 2013 May;145(5):1373-9. doi: 10.1016/j.jtcvs.2012.11.066.

8.

Durability of central aortic valve closure in patients with continuous flow left ventricular assist devices.

McKellar SH, Deo S, Daly RC, Durham LA 3rd, Joyce LD, Stulak JM, Park SJ.

J Thorac Cardiovasc Surg. 2014 Jan;147(1):344-8. doi: 10.1016/j.jtcvs.2012.09.098.

9.

An external aortic root device for decreasing aortic regurgitation: in vitro and in vivo animal studies.

Reimold SC, Aranki SF, Caguioa ES, Solomon SD, Birjiniuk V, Cohn LH, Lee RT.

J Card Surg. 1994 May;9(3):304-13.

PMID:
8054725
10.

Improving arterial pulsatility by feedback control of a continuous flow left ventricular assist device via in silico modeling.

Bozkurt S, van de Vosse FN, Rutten MC.

Int J Artif Organs. 2014 Oct;37(10):773-85. doi: 10.5301/ijao.5000328.

11.

A simplified echocardiographic technique for detecting continuous-flow left ventricular assist device malfunction due to pump thrombosis.

Estep JD, Vivo RP, Cordero-Reyes AM, Bhimaraj A, Trachtenberg BH, Torre-Amione G, Chang SM, Elias B, Bruckner BA, Suarez EE, Loebe M.

J Heart Lung Transplant. 2014 Jun;33(6):575-86. doi: 10.1016/j.healun.2014.01.865.

PMID:
24656286
12.

Verification of a computational cardiovascular system model comparing the hemodynamics of a continuous flow to a synchronous valveless pulsatile flow left ventricular assist device.

Gohean JR, George MJ, Pate TD, Kurusz M, Longoria RG, Smalling RW.

ASAIO J. 2013 Mar-Apr;59(2):107-16. doi: 10.1097/MAT.0b013e31827db6d4.

13.

Modeling aortic valve closure under the action of a ventricular assist device.

Alonazi KA, Savkin AV, Lovell NH, Dokos S.

Conf Proc IEEE Eng Med Biol Soc. 2013;2013:679-82. doi: 10.1109/EMBC.2013.6609591.

PMID:
24109778
14.

Pump Speed Waveform Analysis to Detect Aortic Valve Opening in Patients on Ventricular Assist Device Support.

Hayward C, Lim CP, Schima H, Macdonald P, Moscato F, Muthiah K, Granegger M.

Artif Organs. 2015 Aug;39(8):704-9. doi: 10.1111/aor.12570.

PMID:
26234450
15.

Rotary pump speed modulation for generating pulsatile flow and phasic left ventricular volume unloading in a bovine model of chronic ischemic heart failure.

Soucy KG, Giridharan GA, Choi Y, Sobieski MA, Monreal G, Cheng A, Schumer E, Slaughter MS, Koenig SC.

J Heart Lung Transplant. 2015 Jan;34(1):122-31. doi: 10.1016/j.healun.2014.09.017.

PMID:
25447573
16.
17.

Hemodynamic and pressure-volume responses to continuous and pulsatile ventricular assist in an adult mock circulation.

Koenig SC, Pantalos GM, Gillars KJ, Ewert DL, Litwak KN, Etoch SW.

ASAIO J. 2004 Jan-Feb;50(1):15-24.

PMID:
14763487
18.

Myocardial hemodynamics, physiology, and perfusion with an axial flow left ventricular assist device in the calf.

Tuzun E, Eya K, Chee HK, Conger JL, Bruno NK, Frazier OH, Kadipasaoglu KA.

ASAIO J. 2004 Jan-Feb;50(1):47-53.

PMID:
14763491
19.

Cellular and hemodynamics responses of failing myocardium to continuous flow mechanical circulatory support using the DeBakey-Noon left ventricular assist device: a comparative analysis with pulsatile-type devices.

Thohan V, Stetson SJ, Nagueh SF, Rivas-Gotz C, Koerner MM, Lafuente JA, Loebe M, Noon GP, Torre-Amione G.

J Heart Lung Transplant. 2005 May;24(5):566-75.

PMID:
15896754
20.

Hemodynamic responses to continuous versus pulsatile mechanical unloading of the failing left ventricle.

Bartoli CR, Giridharan GA, Litwak KN, Sobieski M, Prabhu SD, Slaughter MS, Koenig SC.

ASAIO J. 2010 Sep-Oct;56(5):410-6. doi: 10.1097/MAT.0b013e3181e7bf3c.

PMID:
20613490

Supplemental Content

Support Center