Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 137

1.

ETS factors reprogram the androgen receptor cistrome and prime prostate tumorigenesis in response to PTEN loss.

Chen Y, Chi P, Rockowitz S, Iaquinta PJ, Shamu T, Shukla S, Gao D, Sirota I, Carver BS, Wongvipat J, Scher HI, Zheng D, Sawyers CL.

Nat Med. 2013 Aug;19(8):1023-9. doi: 10.1038/nm.3216. Epub 2013 Jun 30.

2.

Prostate tumor development and androgen receptor function alterations in a new mouse model with ERG overexpression and PTEN inactivation.

Srivastava A, Price DK, Figg WD.

Cancer Biol Ther. 2014 Oct;15(10):1293-5. doi: 10.4161/cbt.29694. Epub 2014 Jul 9.

3.

Interaction of the Androgen Receptor, ETV1, and PTEN Pathways in Mouse Prostate Varies with Pathological Stage and Predicts Cancer Progression.

Higgins J, Brogley M, Palanisamy N, Mehra R, Ittmann MM, Li JZ, Tomlins SA, Robins DM.

Horm Cancer. 2015 Jun;6(2-3):67-86. doi: 10.1007/s12672-014-0215-9. Epub 2015 Jan 29.

4.

ETS family transcription factors collaborate with alternative signaling pathways to induce carcinoma from adult murine prostate cells.

Zong Y, Xin L, Goldstein AS, Lawson DA, Teitell MA, Witte ON.

Proc Natl Acad Sci U S A. 2009 Jul 28;106(30):12465-70. doi: 10.1073/pnas.0905931106. Epub 2009 Jul 10.

5.

Suppression of CHK1 by ETS Family Members Promotes DNA Damage Response Bypass and Tumorigenesis.

Lunardi A, Varmeh S, Chen M, Taulli R, Guarnerio J, Ala U, Seitzer N, Ishikawa T, Carver BS, Hobbs RM, Quarantotti V, Ng C, Berger AH, Nardella C, Poliseno L, Montironi R, Castillo-Martin M, Cordon-Cardo C, Signoretti S, Pandolfi PP.

Cancer Discov. 2015 May;5(5):550-63. doi: 10.1158/2159-8290.CD-13-1050. Epub 2015 Feb 4.

6.

ETV1 directs androgen metabolism and confers aggressive prostate cancer in targeted mice and patients.

Baena E, Shao Z, Linn DE, Glass K, Hamblen MJ, Fujiwara Y, Kim J, Nguyen M, Zhang X, Godinho FJ, Bronson RT, Mucci LA, Loda M, Yuan GC, Orkin SH, Li Z.

Genes Dev. 2013 Mar 15;27(6):683-98. doi: 10.1101/gad.211011.112.

7.

A step toward functionally characterized prostate cancer molecular subtypes.

Demichelis F, Attard G.

Nat Med. 2013 Aug;19(8):966-7. doi: 10.1038/nm.3285. No abstract available.

PMID:
23921739
8.

Induction of prostatic intraepithelial neoplasia and modulation of androgen receptor by ETS variant 1/ETS-related protein 81.

Shin S, Kim TD, Jin F, van Deursen JM, Dehm SM, Tindall DJ, Grande JP, Munz JM, Vasmatzis G, Janknecht R.

Cancer Res. 2009 Oct 15;69(20):8102-10. doi: 10.1158/0008-5472.CAN-09-0941. Epub 2009 Sep 29.

9.

ETS transcription factors control transcription of EZH2 and epigenetic silencing of the tumor suppressor gene Nkx3.1 in prostate cancer.

Kunderfranco P, Mello-Grand M, Cangemi R, Pellini S, Mensah A, Albertini V, Malek A, Chiorino G, Catapano CV, Carbone GM.

PLoS One. 2010 May 10;5(5):e10547. doi: 10.1371/journal.pone.0010547.

10.

COP1 is a tumour suppressor that causes degradation of ETS transcription factors.

Vitari AC, Leong KG, Newton K, Yee C, O'Rourke K, Liu J, Phu L, Vij R, Ferrando R, Couto SS, Mohan S, Pandita A, Hongo JA, Arnott D, Wertz IE, Gao WQ, French DM, Dixit VM.

Nature. 2011 May 15;474(7351):403-6. doi: 10.1038/nature10005.

PMID:
21572435
11.

ETS rearrangements and prostate cancer initiation.

Carver BS, Tran J, Chen Z, Carracedo-Perez A, Alimonti A, Nardella C, Gopalan A, Scardino PT, Cordon-Cardo C, Gerald W, Pandolfi PP.

Nature. 2009 Feb 12;457(7231):E1; discussion E2-3. doi: 10.1038/nature07738.

12.

Loss of Nkx3.1 leads to the activation of discrete downstream target genes during prostate tumorigenesis.

Song H, Zhang B, Watson MA, Humphrey PA, Lim H, Milbrandt J.

Oncogene. 2009 Sep 17;28(37):3307-19. doi: 10.1038/onc.2009.181. Epub 2009 Jul 13.

13.
14.

The androgen receptor cistrome is extensively reprogrammed in human prostate tumorigenesis.

Pomerantz MM, Li F, Takeda DY, Lenci R, Chonkar A, Chabot M, Cejas P, Vazquez F, Cook J, Shivdasani RA, Bowden M, Lis R, Hahn WC, Kantoff PW, Brown M, Loda M, Long HW, Freedman ML.

Nat Genet. 2015 Nov;47(11):1346-51. doi: 10.1038/ng.3419. Epub 2015 Oct 12.

15.

Molecular subtyping of primary prostate cancer reveals specific and shared target genes of different ETS rearrangements.

Paulo P, Ribeiro FR, Santos J, Mesquita D, Almeida M, Barros-Silva JD, Itkonen H, Henrique R, Jerónimo C, Sveen A, Mills IG, Skotheim RI, Lothe RA, Teixeira MR.

Neoplasia. 2012 Jul;14(7):600-11.

17.

Reciprocal feedback regulation of PI3K and androgen receptor signaling in PTEN-deficient prostate cancer.

Carver BS, Chapinski C, Wongvipat J, Hieronymus H, Chen Y, Chandarlapaty S, Arora VK, Le C, Koutcher J, Scher H, Scardino PT, Rosen N, Sawyers CL.

Cancer Cell. 2011 May 17;19(5):575-86. doi: 10.1016/j.ccr.2011.04.008.

18.

Id4 deficiency attenuates prostate development and promotes PIN-like lesions by regulating androgen receptor activity and expression of NKX3.1 and PTEN.

Sharma P, Knowell AE, Chinaranagari S, Komaragiri S, Nagappan P, Patel D, Havrda MC, Chaudhary J.

Mol Cancer. 2013 Jun 21;12:67. doi: 10.1186/1476-4598-12-67.

19.

Interactions and relationships of PTEN, ERG, SPINK1 and AR in castration-resistant prostate cancer.

Bismar TA, Yoshimoto M, Duan Q, Liu S, Sircar K, Squire JA.

Histopathology. 2012 Mar;60(4):645-52. doi: 10.1111/j.1365-2559.2011.04116.x. Epub 2012 Jan 19.

PMID:
22260502
20.

Characterizing the contribution of stem/progenitor cells to tumorigenesis in the Pten-/-TP53-/- prostate cancer model.

Abou-Kheir WG, Hynes PG, Martin PL, Pierce R, Kelly K.

Stem Cells. 2010 Dec;28(12):2129-40. doi: 10.1002/stem.538.

Supplemental Content

Support Center