Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 143

1.

A hybrid approach to determining cornea mechanical properties in vivo using a combination of nano-indentation and inverse finite element analysis.

Abyaneh MH, Wildman RD, Ashcroft IA, Ruiz PD.

J Mech Behav Biomed Mater. 2013 Nov;27:239-48. doi: 10.1016/j.jmbbm.2013.05.016. Epub 2013 Jun 3.

PMID:
23816808
2.

An indentation technique to characterize the mechanical and viscoelastic properties of human and porcine corneas.

Ahearne M, Yang Y, Then KY, Liu KK.

Ann Biomed Eng. 2007 Sep;35(9):1608-16. Epub 2007 May 4.

PMID:
17479366
3.

Measuring the compressive viscoelastic mechanical properties of human cervical tissue using indentation.

Yao W, Yoshida K, Fernandez M, Vink J, Wapner RJ, Ananth CV, Oyen ML, Myers KM.

J Mech Behav Biomed Mater. 2014 Jun;34:18-26. doi: 10.1016/j.jmbbm.2014.01.016. Epub 2014 Jan 29.

PMID:
24548950
4.

Study of indentation of a sample equine bone using finite element simulation and single cycle reference point indentation.

Hoffseth K, Randall C, Hansma P, Yang HT.

J Mech Behav Biomed Mater. 2015 Feb;42:282-91. doi: 10.1016/j.jmbbm.2014.11.020. Epub 2014 Nov 29.

PMID:
25528690
5.

Material Properties from Air Puff Corneal Deformation by Numerical Simulations on Model Corneas.

Bekesi N, Dorronsoro C, de la Hoz A, Marcos S.

PLoS One. 2016 Oct 28;11(10):e0165669. doi: 10.1371/journal.pone.0165669. eCollection 2016.

6.

Mechano-rheological properties of the murine thrombus determined via nanoindentation and finite element modeling.

Slaboch CL, Alber MS, Rosen ED, Ovaert TC.

J Mech Behav Biomed Mater. 2012 Jun;10:75-86. doi: 10.1016/j.jmbbm.2012.02.012. Epub 2012 Feb 27.

PMID:
22520420
7.

Inverse finite-element modeling for tissue parameter identification using a rolling indentation probe.

Liu H, Sangpradit K, Li M, Dasgupta P, Althoefer K, Seneviratne LD.

Med Biol Eng Comput. 2014 Jan;52(1):17-28. doi: 10.1007/s11517-013-1118-6. Epub 2013 Sep 15.

PMID:
24037385
8.

Finite element modeling of hyper-viscoelasticity of peripheral nerve ultrastructures.

Chang CT, Chen YH, Lin CC, Ju MS.

J Biomech. 2015 Jul 16;48(10):1982-7. doi: 10.1016/j.jbiomech.2015.04.004. Epub 2015 Apr 15.

PMID:
25912662
9.

The nano-epsilon dot method for strain rate viscoelastic characterisation of soft biomaterials by spherical nano-indentation.

Mattei G, Gruca G, Rijnveld N, Ahluwalia A.

J Mech Behav Biomed Mater. 2015 Oct;50:150-9. doi: 10.1016/j.jmbbm.2015.06.015. Epub 2015 Jun 24.

PMID:
26143307
10.

Local anisotropic mechanical properties of human carotid atherosclerotic plaques - characterisation by micro-indentation and inverse finite element analysis.

Chai CK, Akyildiz AC, Speelman L, Gijsen FJ, Oomens CW, van Sambeek MR, van der Lugt A, Baaijens FP.

J Mech Behav Biomed Mater. 2015 Mar;43:59-68. doi: 10.1016/j.jmbbm.2014.12.004. Epub 2014 Dec 12.

PMID:
25553556
11.

Mechanical characterization of porcine corneas.

Boschetti F, Triacca V, Spinelli L, Pandolfi A.

J Biomech Eng. 2012 Mar;134(3):031003. doi: 10.1115/1.4006089.

PMID:
22482683
12.

Modelling and simulation of porcine liver tissue indentation using finite element method and uniaxial stress-strain data.

Fu YB, Chui CK.

J Biomech. 2014 Jul 18;47(10):2430-5. doi: 10.1016/j.jbiomech.2014.04.009. Epub 2014 Apr 24.

PMID:
24811044
13.

Corneal hyper-viscoelastic model: derivations, experiments, and simulations.

Su P, Yang Y, Xiao J, Song Y.

Acta Bioeng Biomech. 2015;17(2):73-84.

PMID:
26399307
14.

Elastic and viscoelastic properties of porcine subdermal fat using MRI and inverse FEA.

Sims AM, Stait-Gardner T, Fong L, Morley JW, Price WS, Hoffman M, Simmons A, Schindhelm K.

Biomech Model Mechanobiol. 2010 Dec;9(6):703-11. doi: 10.1007/s10237-010-0207-9. Epub 2010 Mar 23.

PMID:
20309602
15.

Anterior chamber angle opening during corneoscleral indentation: the mechanism of whole eye globe deformation and the importance of the limbus.

Amini R, Barocas VH.

Invest Ophthalmol Vis Sci. 2009 Nov;50(11):5288-94. doi: 10.1167/iovs.08-2890. Epub 2009 Jun 24. Erratum in: Invest Ophthalmol Vis Sci. 2013 Nov;54(12):7323.

PMID:
19553625
16.

An optimized transversely isotropic, hyper-poro-viscoelastic finite element model of the meniscus to evaluate mechanical degradation following traumatic loading.

Wheatley BB, Fischenich KM, Button KD, Haut RC, Haut Donahue TL.

J Biomech. 2015 Jun 1;48(8):1454-60. doi: 10.1016/j.jbiomech.2015.02.028. Epub 2015 Mar 5.

17.

Mechanical responses of the periodontal ligament based on an exponential hyperelastic model: a combined experimental and finite element method.

Huang H, Tang W, Yan B, Wu B, Cao D.

Comput Methods Biomech Biomed Engin. 2016;19(2):188-98. doi: 10.1080/10255842.2015.1006207. Epub 2015 Feb 4.

PMID:
25648914
18.

Determination of the mechanical and physical properties of cartilage by coupling poroelastic-based finite element models of indentation with artificial neural networks.

Arbabi V, Pouran B, Campoli G, Weinans H, Zadpoor AA.

J Biomech. 2016 Mar 21;49(5):631-7. doi: 10.1016/j.jbiomech.2015.12.014. Epub 2016 Feb 23.

PMID:
26944689
19.

Finite-element modeling of soft tissue rolling indentation.

Sangpradit K, Liu H, Dasgupta P, Althoefer K, Seneviratne LD.

IEEE Trans Biomed Eng. 2011 Dec;58(12):3319-27. doi: 10.1109/TBME.2011.2106783. Epub 2011 Jan 20.

PMID:
21257372
20.

Constitutive modeling of porcine liver in indentation using 3D ultrasound imaging.

Jordan P, Socrate S, Zickler TE, Howe RD.

J Mech Behav Biomed Mater. 2009 Apr;2(2):192-201. doi: 10.1016/j.jmbbm.2008.08.006. Epub 2008 Sep 6.

Supplemental Content

Support Center