Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 73

1.

Draft Genome Sequence of Methylomicrobium buryatense Strain 5G, a Haloalkaline-Tolerant Methanotrophic Bacterium.

Khmelenina VN, Beck DA, Munk C, Davenport K, Daligault H, Erkkila T, Goodwin L, Gu W, Lo CC, Scholz M, Teshima H, Xu Y, Chain P, Bringel F, Vuilleumier S, Dispirito A, Dunfield P, Jetten MS, Klotz MG, Knief C, Murrell JC, Op den Camp HJ, Sakai Y, Semrau J, Svenning M, Stein LY, Trotsenko YA, Kalyuzhnaya MG.

Genome Announc. 2013 Jun 27;1(4). pii: e00053-13. doi: 10.1128/genomeA.00053-13.

2.

Genome-scale metabolic reconstructions and theoretical investigation of methane conversion in Methylomicrobium buryatense strain 5G(B1).

de la Torre A, Metivier A, Chu F, Laurens LM, Beck DA, Pienkos PT, Lidstrom ME, Kalyuzhnaya MG.

Microb Cell Fact. 2015 Nov 25;14:188. doi: 10.1186/s12934-015-0377-3.

3.

Genetic tools for the industrially promising methanotroph Methylomicrobium buryatense.

Puri AW, Owen S, Chu F, Chavkin T, Beck DA, Kalyuzhnaya MG, Lidstrom ME.

Appl Environ Microbiol. 2015 Mar;81(5):1775-81. doi: 10.1128/AEM.03795-14. Epub 2014 Dec 29.

4.

Enhanced biological fixation of methane for microbial lipid production by recombinant Methylomicrobium buryatense.

Fei Q, Puri AW, Smith H, Dowe N, Pienkos PT.

Biotechnol Biofuels. 2018 May 4;11:129. doi: 10.1186/s13068-018-1128-6. eCollection 2018.

5.

A modular approach for high-flux lactic acid production from methane in an industrial medium using engineered Methylomicrobium buryatense 5GB1.

Garg S, Clomburg JM, Gonzalez R.

J Ind Microbiol Biotechnol. 2018 Apr 19. doi: 10.1007/s10295-018-2035-3. [Epub ahead of print]

PMID:
29675615
6.

Bioconversion of methane to lactate by an obligate methanotrophic bacterium.

Henard CA, Smith H, Dowe N, Kalyuzhnaya MG, Pienkos PT, Guarnieri MT.

Sci Rep. 2016 Feb 23;6:21585. doi: 10.1038/srep21585.

7.

Fatty Acid Biosynthesis Pathways in Methylomicrobium buryatense 5G(B1).

Demidenko A, Akberdin IR, Allemann M, Allen EE, Kalyuzhnaya MG.

Front Microbiol. 2017 Jan 10;7:2167. doi: 10.3389/fmicb.2016.02167. eCollection 2016.

8.

The oxidative TCA cycle operates during methanotrophic growth of the Type I methanotroph Methylomicrobium buryatense 5GB1.

Fu Y, Li Y, Lidstrom M.

Metab Eng. 2017 Jul;42:43-51. doi: 10.1016/j.ymben.2017.05.003. Epub 2017 May 25.

PMID:
28552747
9.

Bioreactor performance parameters for an industrially-promising methanotroph Methylomicrobium buryatense 5GB1.

Gilman A, Laurens LM, Puri AW, Chu F, Pienkos PT, Lidstrom ME.

Microb Cell Fact. 2015 Nov 16;14:182. doi: 10.1186/s12934-015-0372-8.

10.

Taxonomic characterization of new alkaliphilic and alkalitolerant methanotrophs from soda lakes of the Southeastern Transbaikal region and description of Methylomicrobium buryatense sp.nov.

Kaluzhnaya M, Khmelenina V, Eshinimaev B, Suzina N, Nikitin D, Solonin A, Lin JL, McDonald I, Murrell C, Trotsenko Y.

Syst Appl Microbiol. 2001 Jul;24(2):166-76.

PMID:
11518319
11.

Genome sequence of the haloalkaliphilic methanotrophic bacterium Methylomicrobium alcaliphilum 20Z.

Vuilleumier S, Khmelenina VN, Bringel F, Reshetnikov AS, Lajus A, Mangenot S, Rouy Z, Op den Camp HJ, Jetten MS, Dispirito AA, Dunfield P, Klotz MG, Semrau JD, Stein LY, Barbe V, Médigue C, Trotsenko YA, Kalyuzhnaya MG.

J Bacteriol. 2012 Jan;194(2):551-2. doi: 10.1128/JB.06392-11.

12.

Methane utilization in Methylomicrobium alcaliphilum 20ZR: a systems approach.

Akberdin IR, Thompson M, Hamilton R, Desai N, Alexander D, Henard CA, Guarnieri MT, Kalyuzhnaya MG.

Sci Rep. 2018 Feb 6;8(1):2512. doi: 10.1038/s41598-018-20574-z. Erratum in: Sci Rep. 2018 Mar 14;8(1):4753.

13.

Classification of halo(alkali)philic and halo(alkali)tolerant methanotrophs provisionally assigned to the genera Methylomicrobium and Methylobacter and emended description of the genus Methylomicrobium.

Kalyuzhnaya MG, Khmelenina V, Eshinimaev B, Sorokin D, Fuse H, Lidstrom M, Trotsenko Y.

Int J Syst Evol Microbiol. 2008 Mar;58(Pt 3):591-6. doi: 10.1099/ijs.0.65317-0.

PMID:
18319461
14.

Oxygen-limited metabolism in the methanotroph Methylomicrobium buryatense 5GB1C.

Gilman A, Fu Y, Hendershott M, Chu F, Puri AW, Smith AL, Pesesky M, Lieberman R, Beck DAC, Lidstrom ME.

PeerJ. 2017 Oct 20;5:e3945. doi: 10.7717/peerj.3945. eCollection 2017.

15.
16.

Genetic systems for moderately halo(alkali)philic bacteria of the genus Methylomicrobium.

Ojala DS, Beck DA, Kalyuzhnaya MG.

Methods Enzymol. 2011;495:99-118. doi: 10.1016/B978-0-12-386905-0.00007-3.

PMID:
21419917
17.

Draft Genome Sequence of the Methanotrophic Gammaproteobacterium Methyloglobulus morosus DSM 22980 Strain KoM1.

Poehlein A, Deutzmann JS, Daniel R, Simeonova DD.

Genome Announc. 2013 Dec 19;1(6). pii: e01078-13. doi: 10.1128/genomeA.01078-13.

18.

Draft Genome Sequence of "Halomonas chromatireducens" Strain AGD 8-3, a Haloalkaliphilic Chromate- and Selenite-Reducing Gammaproteobacterium.

Sharko FS, Shapovalova AA, Tsygankova SV, Komova AV, Boulygina ES, Teslyuk AB, Gotovtsev PM, Namsaraev ZB, Khijniak TV, Nedoluzhko AV, Vasilov RG.

Genome Announc. 2016 Mar 17;4(2). pii: e00160-16. doi: 10.1128/genomeA.00160-16.

19.

Genome Sequence of the Obligate Gammaproteobacterial Methanotroph Methylomicrobium album Strain BG8.

Kits KD, Kalyuzhnaya MG, Klotz MG, Jetten MS, Op den Camp HJ, Vuilleumier S, Bringel F, Dispirito AA, Murrell JC, Bruce D, Cheng JF, Copeland A, Goodwin L, Hauser L, Lajus A, Land ML, Lapidus A, Lucas S, Médigue C, Pitluck S, Woyke T, Zeytun A, Stein LY.

Genome Announc. 2013 Apr 11;1(2):e0017013. doi: 10.1128/genomeA.00170-13.

20.

Effects of granular activated carbon on methane removal performance and methanotrophic community of a lab-scale bioreactor.

Lee EH, Choi SA, Yi T, Kim TG, Lee SD, Cho KS.

J Environ Sci Health A Tox Hazard Subst Environ Eng. 2015;50(2):193-200. doi: 10.1080/10934529.2014.975541.

PMID:
25560265

Supplemental Content

Support Center