Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 380

1.

Dissection of conformational conversion events during prion amyloid fibril formation using hydrogen exchange and mass spectrometry.

Singh J, Udgaonkar JB.

J Mol Biol. 2013 Sep 23;425(18):3510-21. doi: 10.1016/j.jmb.2013.06.009. Epub 2013 Jun 25.

PMID:
23811055
2.

Development of the structural core and of conformational heterogeneity during the conversion of oligomers of the mouse prion protein to worm-like amyloid fibrils.

Singh J, Sabareesan AT, Mathew MK, Udgaonkar JB.

J Mol Biol. 2012 Oct 19;423(2):217-31. doi: 10.1016/j.jmb.2012.06.040. Epub 2012 Jul 9.

PMID:
22789566
3.

Hydrogen/deuterium exchange mass spectrometry identifies two highly protected regions in recombinant full-length prion protein amyloid fibrils.

Nazabal A, Hornemann S, Aguzzi A, Zenobi R.

J Mass Spectrom. 2009 Jun;44(6):965-77. doi: 10.1002/jms.1572.

PMID:
19283723
4.

Beta-sheet core of human prion protein amyloid fibrils as determined by hydrogen/deuterium exchange.

Lu X, Wintrode PL, Surewicz WK.

Proc Natl Acad Sci U S A. 2007 Jan 30;104(5):1510-5. Epub 2007 Jan 22.

5.

Structure and intermolecular dynamics of aggregates populated during amyloid fibril formation studied by hydrogen/deuterium exchange.

Carulla N, Zhou M, Giralt E, Robinson CV, Dobson CM.

Acc Chem Res. 2010 Aug 17;43(8):1072-9. doi: 10.1021/ar9002784.

PMID:
20557067
6.
7.

Shaking alone induces de novo conversion of recombinant prion proteins to β-sheet rich oligomers and fibrils.

Ladner-Keay CL, Griffith BJ, Wishart DS.

PLoS One. 2014 Jun 3;9(6):e98753. doi: 10.1371/journal.pone.0098753. eCollection 2014.

8.

Salt-induced modulation of the pathway of amyloid fibril formation by the mouse prion protein.

Jain S, Udgaonkar JB.

Biochemistry. 2010 Sep 7;49(35):7615-24. doi: 10.1021/bi100745j.

PMID:
20712298
9.

Core sequence of PAPf39 amyloid fibrils and mechanism of pH-dependent fibril formation: the role of monomer conformation.

French KC, Makhatadze GI.

Biochemistry. 2012 Dec 21;51(51):10127-36. doi: 10.1021/bi301406d. Epub 2012 Dec 12.

10.

Defining the pathway of worm-like amyloid fibril formation by the mouse prion protein by delineation of the productive and unproductive oligomerization reactions.

Jain S, Udgaonkar JB.

Biochemistry. 2011 Feb 22;50(7):1153-61. doi: 10.1021/bi101757x. Epub 2011 Jan 26.

PMID:
21214263
11.

Hydrogen/deuterium exchange mass spectrometric analysis of conformational changes accompanying the assembly of the yeast prion Ure2p into protein fibrils.

Redeker V, Halgand F, Le Caer JP, Bousset L, Laprévote O, Melki R.

J Mol Biol. 2007 Jun 15;369(4):1113-25. Epub 2007 Apr 12.

PMID:
17482207
12.

β-hairpin-mediated formation of structurally distinct multimers of neurotoxic prion peptides.

Gill AC.

PLoS One. 2014 Jan 31;9(1):e87354. doi: 10.1371/journal.pone.0087354. eCollection 2014.

13.

Critical region for amyloid fibril formation of mouse prion protein: unusual amyloidogenic properties of the helix 2 peptide.

Yamaguchi K, Matsumoto T, Kuwata K.

Biochemistry. 2008 Dec 16;47(50):13242-51. doi: 10.1021/bi801562w.

PMID:
19053276
14.

Amyloid fibrils of human prion protein are spun and woven from morphologically disordered aggregates.

Almstedt K, Nyström S, Nilsson KP, Hammarström P.

Prion. 2009 Oct-Dec;3(4):224-35. Epub 2009 Oct 16.

15.

Site-specific conformational studies of prion protein (PrP) amyloid fibrils revealed two cooperative folding domains within amyloid structure.

Sun Y, Breydo L, Makarava N, Yang Q, Bocharova OV, Baskakov IV.

J Biol Chem. 2007 Mar 23;282(12):9090-7. Epub 2007 Jan 23.

16.

Prion protein amyloid formation under native-like conditions involves refolding of the C-terminal alpha-helical domain.

Cobb NJ, Apetri AC, Surewicz WK.

J Biol Chem. 2008 Dec 12;283(50):34704-11. doi: 10.1074/jbc.M806701200. Epub 2008 Oct 17.

17.

Distinct structures of scrapie prion protein (PrPSc)-seeded versus spontaneous recombinant prion protein fibrils revealed by hydrogen/deuterium exchange.

Smirnovas V, Kim JI, Lu X, Atarashi R, Caughey B, Surewicz WK.

J Biol Chem. 2009 Sep 4;284(36):24233-41. doi: 10.1074/jbc.M109.036558. Epub 2009 Jul 13.

18.

Conformational stability of mammalian prion protein amyloid fibrils is dictated by a packing polymorphism within the core region.

Cobb NJ, Apostol MI, Chen S, Smirnovas V, Surewicz WK.

J Biol Chem. 2014 Jan 31;289(5):2643-50. doi: 10.1074/jbc.M113.520718. Epub 2013 Dec 12.

19.

Conformational stability of PrP amyloid fibrils controls their smallest possible fragment size.

Sun Y, Makarava N, Lee CI, Laksanalamai P, Robb FT, Baskakov IV.

J Mol Biol. 2008 Feb 29;376(4):1155-67. doi: 10.1016/j.jmb.2007.12.053. Epub 2008 Jan 3.

20.

Amyloid nucleation and hierarchical assembly of Ure2p fibrils. Role of asparagine/glutamine repeat and nonrepeat regions of the prion domains.

Jiang Y, Li H, Zhu L, Zhou JM, Perrett S.

J Biol Chem. 2004 Jan 30;279(5):3361-9. Epub 2003 Nov 10.

Supplemental Content

Support Center