Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 156

1.

Role of tyrosine residue in methane activation at the dicopper site of particulate methane monooxygenase: a density functional theory study.

Shiota Y, Juhász G, Yoshizawa K.

Inorg Chem. 2013 Jul 15;52(14):7907-17. doi: 10.1021/ic400417d. Epub 2013 Jun 28.

PMID:
23808646
3.

Comparison of the reactivity of bis(mu-oxo)Cu(II)Cu(III) and Cu(III)Cu(III) species to methane.

Shiota Y, Yoshizawa K.

Inorg Chem. 2009 Feb 2;48(3):838-45. doi: 10.1021/ic8003933.

PMID:
19113938
4.

Theoretical modeling of the hydroxylation of methane as mediated by the particulate methane monooxygenase.

Chen PP, Chan SI.

J Inorg Biochem. 2006 Apr;100(4):801-9. Epub 2006 Feb 21.

PMID:
16494948
5.

Possible Peroxo State of the Dicopper Site of Particulate Methane Monooxygenase from Combined Quantum Mechanics and Molecular Mechanics Calculations.

Itoyama S, Doitomi K, Kamachi T, Shiota Y, Yoshizawa K.

Inorg Chem. 2016 Mar 21;55(6):2771-5. doi: 10.1021/acs.inorgchem.5b02603. Epub 2016 Feb 26.

PMID:
26918461
6.

Complete mechanism of sigma* intramolecular aromatic hydroxylation through O2 activation by a macrocyclic dicopper(I) complex.

Poater A, Ribas X, Llobet A, Cavallo L, Solà M.

J Am Chem Soc. 2008 Dec 31;130(52):17710-7. doi: 10.1021/ja801913b.

PMID:
19055343
7.

Crystal structure and characterization of particulate methane monooxygenase from Methylocystis species strain M.

Smith SM, Rawat S, Telser J, Hoffman BM, Stemmler TL, Rosenzweig AC.

Biochemistry. 2011 Nov 29;50(47):10231-40. doi: 10.1021/bi200801z. Epub 2011 Nov 3.

8.

Chemical Plausibility of Cu(III) with Biological Ligation in pMMO.

Citek C, Gary JB, Wasinger EC, Stack TD.

J Am Chem Soc. 2015 Jun 10;137(22):6991-4. doi: 10.1021/jacs.5b02157. Epub 2015 May 28.

PMID:
26020834
9.

Identification of the valence and coordination environment of the particulate methane monooxygenase copper centers by advanced EPR characterization.

Culpepper MA, Cutsail GE 3rd, Gunderson WA, Hoffman BM, Rosenzweig AC.

J Am Chem Soc. 2014 Aug 20;136(33):11767-75. doi: 10.1021/ja5053126. Epub 2014 Aug 8.

10.

A radical rebound mechanism for the methane oxidation reaction promoted by the dicopper center of a pMMO enzyme: a computational perspective.

Da Silva JC, Pennifold RC, Harvey JN, Rocha WR.

Dalton Trans. 2016 Feb 14;45(6):2492-504. doi: 10.1039/c5dt02638e. Epub 2015 Dec 24.

PMID:
26697968
11.

Primary amine stabilization of a dicopper(III) bis(μ-oxo) species: modeling the ligation in pMMO.

Citek C, Lin BL, Phelps TE, Wasinger EC, Stack TD.

J Am Chem Soc. 2014 Oct 15;136(41):14405-8. doi: 10.1021/ja508630d. Epub 2014 Sep 30.

PMID:
25268334
12.
13.

Controlled oxidation of hydrocarbons by the membrane-bound methane monooxygenase: the case for a tricopper cluster.

Chan SI, Yu SS.

Acc Chem Res. 2008 Aug;41(8):969-79. doi: 10.1021/ar700277n. Epub 2008 Jul 8. Review.

PMID:
18605740
14.

Selective oxidation of methane by the bis(mu-oxo)dicopper core stabilized on ZSM-5 and mordenite zeolites.

Groothaert MH, Smeets PJ, Sels BF, Jacobs PA, Schoonheydt RA.

J Am Chem Soc. 2005 Feb 9;127(5):1394-5.

PMID:
15686370
15.

Electrophilic arene hydroxylation and phenol O-H oxidations performed by an unsymmetric μ-η(1):η(1)-O2-peroxo dicopper(II) complex.

Garcia-Bosch I, Ribas X, Costas M.

Chemistry. 2012 Feb 13;18(7):2113-22. doi: 10.1002/chem.201102372. Epub 2012 Jan 16.

PMID:
22250002
16.
17.

Geometric and electronic structure of [{Cu(MeAN)}2(μ-η2:η2(O2(2-)))]2+ with an unusually long O-O bond: O-O bond weakening vs activation for reductive cleavage.

Park GY, Qayyum MF, Woertink J, Hodgson KO, Hedman B, Narducci Sarjeant AA, Solomon EI, Karlin KD.

J Am Chem Soc. 2012 May 23;134(20):8513-24. doi: 10.1021/ja300674m. Epub 2012 May 9.

18.

Structural and reactivity models for copper oxygenases: cooperative effects and novel reactivities.

Serrano-Plana J, Garcia-Bosch I, Company A, Costas M.

Acc Chem Res. 2015 Aug 18;48(8):2397-406. doi: 10.1021/acs.accounts.5b00187. Epub 2015 Jul 24.

PMID:
26207342
19.

Copper-dioxygen complex mediated C-H bond oxygenation: relevance for particulate methane monooxygenase (pMMO).

Himes RA, Karlin KD.

Curr Opin Chem Biol. 2009 Feb;13(1):119-31. doi: 10.1016/j.cbpa.2009.02.025. Epub 2009 Mar 13. Review.

20.

Evidence for oxygen binding at the active site of particulate methane monooxygenase.

Culpepper MA, Cutsail GE 3rd, Hoffman BM, Rosenzweig AC.

J Am Chem Soc. 2012 May 9;134(18):7640-3. doi: 10.1021/ja302195p. Epub 2012 May 1.

Supplemental Content

Support Center