Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 83

1.

Effect of overexpression of kinase- or RNase-deficient OsIRE1 on the endoplasmic reticulum stress response in transgenic rice plants.

Wakasa Y, Hayashi S, Takaiwa F.

Plant Signal Behav. 2013 Sep;8(9). pii: e25343. doi: 10.4161/psb.25343. Epub 2013 Jun 18.

2.

Signal transduction by IRE1-mediated splicing of bZIP50 and other stress sensors in the endoplasmic reticulum stress response of rice.

Hayashi S, Wakasa Y, Takahashi H, Kawakatsu T, Takaiwa F.

Plant J. 2012 Mar;69(6):946-56. doi: 10.1111/j.1365-313X.2011.04844.x. Epub 2011 Dec 12.

3.

Expression of OsBiP4 and OsBiP5 is highly correlated with the endoplasmic reticulum stress response in rice.

Wakasa Y, Hayashi S, Takaiwa F.

Planta. 2012 Nov;236(5):1519-27. doi: 10.1007/s00425-012-1714-y. Epub 2012 Jul 24.

PMID:
22824965
4.

RNA sequencing-mediated transcriptome analysis of rice plants in endoplasmic reticulum stress conditions.

Wakasa Y, Oono Y, Yazawa T, Hayashi S, Ozawa K, Handa H, Matsumoto T, Takaiwa F.

BMC Plant Biol. 2014 Apr 18;14:101. doi: 10.1186/1471-2229-14-101.

5.

Multiple roles of the ER stress sensor IRE1 demonstrated by gene targeting in rice.

Wakasa Y, Hayashi S, Ozawa K, Takaiwa F.

Sci Rep. 2012;2:944. doi: 10.1038/srep00944. Epub 2012 Dec 10.

6.

ER stress response induced by the production of human IL-7 in rice endosperm cells.

Kudo K, Ohta M, Yang L, Wakasa Y, Takahashi S, Takaiwa F.

Plant Mol Biol. 2013 Mar;81(4-5):461-75. doi: 10.1007/s11103-013-0016-5. Epub 2013 Feb 1.

PMID:
23371559
7.

Conservation of IRE1-regulated bZIP74 mRNA unconventional splicing in rice (Oryza sativa L.) involved in ER stress responses.

Lu SJ, Yang ZT, Sun L, Sun L, Song ZT, Liu JX.

Mol Plant. 2012 Mar;5(2):504-14. doi: 10.1093/mp/ssr115. Epub 2011 Dec 22.

8.

A rice transmembrane bZIP transcription factor, OsbZIP39, regulates the endoplasmic reticulum stress response.

Takahashi H, Kawakatsu T, Wakasa Y, Hayashi S, Takaiwa F.

Plant Cell Physiol. 2012 Jan;53(1):144-53. doi: 10.1093/pcp/pcr157. Epub 2011 Nov 14.

PMID:
22084314
9.

Isolation and characterization of a putative transducer of endoplasmic reticulum stress in Oryza sativa.

Okushima Y, Koizumi N, Yamaguchi Y, Kimata Y, Kohno K, Sano H.

Plant Cell Physiol. 2002 May;43(5):532-9.

PMID:
12040100
10.

Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice.

Ito Y, Katsura K, Maruyama K, Taji T, Kobayashi M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K.

Plant Cell Physiol. 2006 Jan;47(1):141-53. Epub 2005 Nov 12.

PMID:
16284406
11.

Expression of ER quality control-related genes in response to changes in BiP1 levels in developing rice endosperm.

Wakasa Y, Yasuda H, Oono Y, Kawakatsu T, Hirose S, Takahashi H, Hayashi S, Yang L, Takaiwa F.

Plant J. 2011 Mar;65(5):675-89. doi: 10.1111/j.1365-313X.2010.04453.x. Epub 2011 Jan 12.

12.

Functional analyses of ethylene response factor JERF3 with the aim of improving tolerance to drought and osmotic stress in transgenic rice.

Zhang H, Liu W, Wan L, Li F, Dai L, Li D, Zhang Z, Huang R.

Transgenic Res. 2010 Oct;19(5):809-18. doi: 10.1007/s11248-009-9357-x. Epub 2010 Jan 20.

PMID:
20087656
13.

The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice.

Takasaki H, Maruyama K, Kidokoro S, Ito Y, Fujita Y, Shinozaki K, Yamaguchi-Shinozaki K, Nakashima K.

Mol Genet Genomics. 2010 Sep;284(3):173-83. doi: 10.1007/s00438-010-0557-0. Epub 2010 Jul 15.

PMID:
20632034
14.

Identification of a cis-element that mediates multiple pathways of the endoplasmic reticulum stress response in rice.

Hayashi S, Takahashi H, Wakasa Y, Kawakatsu T, Takaiwa F.

Plant J. 2013 Apr;74(2):248-57. doi: 10.1111/tpj.12117. Epub 2013 Mar 7.

15.

The endoplasmic reticulum stress induced by highly expressed OsrAAT reduces seed size via pre-mature programmed cell death.

Zhang L, Jiang D, Pang J, Chen R, Wang X, Yang D.

Plant Mol Biol. 2013 Sep;83(1-2):153-61. doi: 10.1007/s11103-013-0056-x. Epub 2013 Apr 8. Erratum in: Plant Mol Biol. 2013 Sep;83(1-2):163.

PMID:
23564402
16.

Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice.

Hu H, You J, Fang Y, Zhu X, Qi Z, Xiong L.

Plant Mol Biol. 2008 May;67(1-2):169-81. doi: 10.1007/s11103-008-9309-5. Epub 2008 Feb 14. Erratum in: Plant Mol Biol. 2010 Mar;72(4-5):567-8.

PMID:
18273684
17.
18.

Effects of an exogenous xylanase gene expression on the growth of transgenic rice and the expression level of endogenous xylanase inhibitor gene RIXI.

Weng X, Huang Y, Hou C, Jiang D.

J Sci Food Agric. 2013 Jan 15;93(1):173-9. doi: 10.1002/jsfa.5746. Epub 2012 Jun 7.

PMID:
22674383
19.

Enhanced resistance to the rice blast fungus Magnaporthe grisea conferred by expression of a cecropin A gene in transgenic rice.

Coca M, Peñas G, Gómez J, Campo S, Bortolotti C, Messeguer J, Segundo BS.

Planta. 2006 Feb;223(3):392-406. Epub 2005 Oct 21.

PMID:
16240149
20.

Overexpression of rice CBS domain containing protein improves salinity, oxidative, and heavy metal tolerance in transgenic tobacco.

Singh AK, Kumar R, Pareek A, Sopory SK, Singla-Pareek SL.

Mol Biotechnol. 2012 Nov;52(3):205-16.

PMID:
22302312

Supplemental Content

Support Center