Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 146

1.

Development and properties of surfactant-free water-dispersible Cu2ZnSnS4 nanocrystals: a material for low-cost photovoltaics.

Kush P, Ujjain SK, Mehra NC, Jha P, Sharma RK, Deka S.

Chemphyschem. 2013 Aug 26;14(12):2793-9. doi: 10.1002/cphc.201300290. Epub 2013 Jun 25.

PMID:
23801647
2.

Low-cost electrospun highly crystalline kesterite Cu2ZnSnS4 nanofiber counter electrodes for efficient dye-sensitized solar cells.

Mali SS, Patil PS, Hong CK.

ACS Appl Mater Interfaces. 2014 Feb 12;6(3):1688-96. doi: 10.1021/am404586n. Epub 2014 Jan 22.

PMID:
24383575
3.

Spectral optical properties of Cu2ZnSnS4 thin film between 0.73 and 6.5 eV.

Li J, Du H, Yarbrough J, Norman A, Jones K, Teeter G, Terry FL Jr, Levi D.

Opt Express. 2012 Mar 12;20 Suppl 2:A327-32. doi: 10.1364/OE.20.00A327.

PMID:
22418682
4.

Facile hot-injection synthesis of stoichiometric Cu2ZnSnSe4 nanocrystals using bis(triethylsilyl) selenide.

Jin C, Ramasamy P, Kim J.

Dalton Trans. 2014 Jul 7;43(25):9481-5. doi: 10.1039/c4dt00688g.

PMID:
24823944
5.

Easy hydrothermal preparation of Cu2ZnSnS4 (CZTS) nanoparticles for solar cell application.

Camara SM, Wang L, Zhang X.

Nanotechnology. 2013 Dec 13;24(49):495401. doi: 10.1088/0957-4484/24/49/495401. Epub 2013 Nov 14.

PMID:
24231683
6.

Solution-based synthesis of wurtzite Cu2ZnSnS4 nanoleaves introduced by α-Cu2S nanocrystals as a catalyst.

Zhang W, Zhai L, He N, Zou C, Geng X, Cheng L, Dong Y, Huang S.

Nanoscale. 2013 Sep 7;5(17):8114-21. doi: 10.1039/c3nr02469e.

PMID:
23884477
7.

A nontoxic and low-cost hydrothermal route for synthesis of hierarchical Cu2ZnSnS4 particles.

Xia Y, Chen Z, Zhang Z, Fang X, Liang G.

Nanoscale Res Lett. 2014 May 4;9(1):208. doi: 10.1186/1556-276X-9-208. eCollection 2014.

8.

Wet Chemically Synthesized CuO Bipods and their Optical Properties.

Samanta PK, Saha A, Kamilya T.

Recent Pat Nanotechnol. 2016;10(1):20-5.

PMID:
27018270
9.

Preparation, characterizations and optical property of single crystalline ZnMn2O4 nanoflowers via template-free hydrothermal synthesis.

Javed QU, Wang F, Toufiq AM, Rafiq MY, Iqbal MZ, Kamran MA.

J Nanosci Nanotechnol. 2013 Apr;13(4):2937-42.

PMID:
23763182
10.

Synthesis, characterization and photoluminescence of lanthanum hydroxide nanorods by a simple route at room temperature.

Mu Q, Chen T, Wang Y.

Nanotechnology. 2009 Aug 26;20(34):345602. doi: 10.1088/0957-4484/20/34/345602. Epub 2009 Aug 4.

PMID:
19652269
11.

Solution-based synthesis and characterization of Cu2ZnSnS4 nanocrystals.

Riha SC, Parkinson BA, Prieto AL.

J Am Chem Soc. 2009 Sep 2;131(34):12054-5. doi: 10.1021/ja9044168.

PMID:
19673478
12.

Syntheses of Cu2SnS3 and Cu2ZnSnS4 nanoparticles with tunable Zn/Sn ratios under multibubble sonoluminescence conditions.

Park J, Song M, Jung WM, Lee WY, Kim H, Kim Y, Hwang C, Shim IW.

Dalton Trans. 2013 Aug 7;42(29):10545-50. doi: 10.1039/c3dt50849h. Epub 2013 Jun 12.

PMID:
23759949
13.

Synthesis of ligand-free CZTS nanoparticles via a facile hot injection route.

Mirbagheri N, Engberg S, Crovetto A, Simonsen SB, Hansen O, Lam YM, Schou J.

Nanotechnology. 2016 May 6;27(18):185603. doi: 10.1088/0957-4484/27/18/185603. Epub 2016 Mar 23.

PMID:
27005863
14.

Wurtzite CuInS₂ and CuInxGa₁-xS₂ nanoribbons: synthesis, optical and photoelectrical properties.

Li Q, Zhai L, Zou C, Huang X, Zhang L, Yang Y, Chen X, Huang S.

Nanoscale. 2013 Feb 21;5(4):1638-48. doi: 10.1039/c2nr33173j.

PMID:
23334175
15.

Continuous production of Cu2ZnSnS4 nanocrystals in a flow reactor.

Shavel A, Cadavid D, Ibáñez M, Carrete A, Cabot A.

J Am Chem Soc. 2012 Jan 25;134(3):1438-41. doi: 10.1021/ja209688a. Epub 2012 Jan 9.

PMID:
22211575
16.

One-step synthesis of high quality kesterite Cu2ZnSnS4 nanocrystals - a hydrothermal approach.

Tiong VT, Bell J, Wang H.

Beilstein J Nanotechnol. 2014 Apr 9;5:438-46. doi: 10.3762/bjnano.5.51. eCollection 2014.

17.

Structural evolution of nanocrystalline silicon thin films synthesized in high-density, low-temperature reactive plasmas.

Cheng Q, Xu S, Ostrikov KK.

Nanotechnology. 2009 May 27;20(21):215606. doi: 10.1088/0957-4484/20/21/215606. Epub 2009 May 6.

PMID:
19423937
18.

Strong quantum confinement effects in kesterite Cu2ZnSnS4 nanospheres for organic optoelectronic cells.

Arul NS, Yun DY, Lee DU, Kim TW.

Nanoscale. 2013 Dec 7;5(23):11940-3. doi: 10.1039/c3nr03892k.

PMID:
24129972
19.

Synthesis, structural, and optical properties of stable ZnS:Cu,Cl nanocrystals.

Corrado C, Jiang Y, Oba F, Kozina M, Bridges F, Zhang JZ.

J Phys Chem A. 2009 Apr 23;113(16):3830-9. doi: 10.1021/jp809666t.

PMID:
19170574
20.

Synthesis of α-Fe2O3 Sphere/Rod-Like Nanostructure via Simple Surfactant-Free Precipitation Route: Optical Properties and Formation Mechanism.

Narayanan S, Vijayal JJ, Adinaveen T, Bououdina M, Kennedy LJ.

J Nanosci Nanotechnol. 2015 Jun;15(6):4558-66.

PMID:
26369080

Supplemental Content

Support Center