Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 150

1.
2.

Ex vivo cyclic mechanical behaviour of 2.4 mm locking plates compared with 2.4 mm limited contact plates in a cadaveric diaphyseal gap model.

Irubetagoyena I, Verset M, Palierne S, Swider P, Autefage A.

Vet Comp Orthop Traumatol. 2013;26(6):479-88. doi: 10.3415/VCOT-13-07-0089. Epub 2013 Oct 1.

PMID:
24080774
4.

Ex vivo biomechanical comparison of a 3.5 mm locking compression plate applied cranially and a 2.7 mm locking compression plate applied medially in a gap model of the distal aspect of the canine radius.

Uhl JM, Kapatkin AS, Garcia TC, Stover SM.

Vet Surg. 2013 Oct;42(7):840-6. doi: 10.1111/j.1532-950X.2013.12063.x. Epub 2013 Sep 13.

PMID:
24033354
5.

Biomechanical testing of the LCP--how can stability in locked internal fixators be controlled?

Stoffel K, Dieter U, Stachowiak G, Gächter A, Kuster MS.

Injury. 2003 Nov;34 Suppl 2:B11-9.

PMID:
14580982
6.

Biomechanical Comparison of Locking Compression Plate and Limited Contact Dynamic Compression Plate Combined with an Intramedullary Rod in a Canine Femoral Fracture-Gap Model.

Matres-Lorenzo L, Diop A, Maurel N, Boucton MC, Bernard F, Bernardé A.

Vet Surg. 2016 Apr;45(3):319-26. doi: 10.1111/vsu.12451. Epub 2016 Feb 22.

PMID:
26909507
7.

A biomechanical comparison of 3.5 locking compression plate fixation to 3.5 limited contact dynamic compression plate fixation in a canine cadaveric distal humeral metaphyseal gap model.

Filipowicz D, Lanz O, McLaughlin R, Elder S, Werre S.

Vet Comp Orthop Traumatol. 2009;22(4):270-7. doi: 10.3415/VCOT-08-05-0042. Epub 2009 Jun 23.

PMID:
19597629
8.

Distal femoral fixation: a biomechanical comparison of trigen retrograde intramedullary (i.m.) nail, dynamic condylar screw (DCS), and locking compression plate (LCP) condylar plate.

Heiney JP, Barnett MD, Vrabec GA, Schoenfeld AJ, Baji A, Njus GO.

J Trauma. 2009 Feb;66(2):443-9. doi: 10.1097/TA.0b013e31815edeb8.

PMID:
19204519
9.

In vitro biomechanical comparison of 3.5 string of pearl plate fixation to 3.5 locking compression plate fixation in a canine fracture gap model.

Malenfant RC, Sod GA.

Vet Surg. 2014 May;43(4):465-70. doi: 10.1111/j.1532-950X.2014.12095.x. Epub 2014 Apr 11.

PMID:
24720361
10.

The effect of intramedullary pin size and monocortical screw configuration on locking compression plate-rod constructs in an in vitro fracture gap model.

Pearson T, Glyde M, Hosgood G, Day R.

Vet Comp Orthop Traumatol. 2015;28(2):95-103. doi: 10.3415/VCOT-14-06-0093. Epub 2015 Jan 30.

PMID:
25633043
11.

Complications of appendicular fracture repair in cats and small dogs using locking compression plates.

Vallefuoco R, Le Pommellet H, Savin A, Decambron A, Manassero M, Viateau V, Gauthier O, Fayolle P.

Vet Comp Orthop Traumatol. 2016;29(1):46-52. doi: 10.3415/VCOT-14-09-0146. Epub 2015 Oct 29.

PMID:
26511152
12.

An in vitro biomechanical study of bone plate and interlocking nail in a canine diaphyseal femoral fracture model.

Bernarde A, Diop A, Maurel N, Viguier E.

Vet Surg. 2001 Sep-Oct;30(5):397-408.

PMID:
11555814
13.

An in vitro biomechanical comparison of interlocking nail constructs and double plating for fixation of diaphyseal femur fractures in immature horses.

Radcliffe RM, Lopez MJ, Turner TA, Watkins JP, Radcliffe CH, Markel MD.

Vet Surg. 2001 Mar-Apr;30(2):179-90.

PMID:
11230773
14.

A comparison of conventional compression plates and locking compression plates using cantilever bending in an ilial fracture model.

Bruce CW, Gibson TW, Runciman RJ.

Vet Comp Orthop Traumatol. 2014;27(6):430-5. doi: 10.3415/VCOT-14-01-0001. Epub 2014 Oct 27.

PMID:
25345445
15.

Locking buttons increase fatigue life of locking plates in a segmental bone defect model.

Tompkins M, Paller DJ, Moore DC, Crisco JJ, Terek RM.

Clin Orthop Relat Res. 2013 Mar;471(3):1039-44. doi: 10.1007/s11999-012-2664-1. Epub 2012 Oct 27.

16.

Effect of screw position on single cycle to failure in bending and torsion of a locking plate-rod construct in a synthetic feline femoral gap model.

Niederhäuser SK, Tepic S, Weber UT.

Am J Vet Res. 2015 May;76(5):402-10. doi: 10.2460/ajvr.76.5.402.

PMID:
25909372
17.

Biomechanical comparison of mono- and bicortical screws in an experimentally induced gap fracture.

Demner D, Garcia TC, Serdy MG, Hayashi K, Nir BA, Stover SM.

Vet Comp Orthop Traumatol. 2014;27(6):422-9. doi: 10.3415/VCOT-14-03-0040. Epub 2014 Oct 20.

PMID:
25327936
18.

Biomechanical comparison of two locking plate constructs under cyclic torsional loading in a fracture gap model. Two screws versus three screws per fragment.

Bilmont A, Palierne S, Verset M, Swider P, Autefage A.

Vet Comp Orthop Traumatol. 2015;28(5):323-30. doi: 10.3415/VCOT-14-12-0181. Epub 2015 Jul 29.

PMID:
26219753
19.

Biomechanical comparison of gourd-shaped LCP versus LCP for fixation of comminuted tibial shaft fracture.

Xu GH, Liu B, Zhang Q, Wang J, Chen W, Liu YJ, Peng AQ, Zhang YZ.

J Huazhong Univ Sci Technolog Med Sci. 2013 Apr;33(2):250-7. doi: 10.1007/s11596-013-1106-y. Epub 2013 Apr 17.

PMID:
23592139
20.

Biomechanical evaluation of periprosthetic femoral fracture fixation.

Zdero R, Walker R, Waddell JP, Schemitsch EH.

J Bone Joint Surg Am. 2008 May;90(5):1068-77. doi: 10.2106/JBJS.F.01561.

PMID:
18451400

Supplemental Content

Support Center