Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 142

1.

A large mobility of hydrophilic molecules at the outmost layer controls the protein adsorption and adhering behavior with the actin fiber orientation of human umbilical vein endothelial cells (HUVEC).

Kakinoki S, Seo JH, Inoue Y, Ishihara K, Yui N, Yamaoka T.

J Biomater Sci Polym Ed. 2013;24(11):1320-32. doi: 10.1080/09205063.2012.757726. Epub 2013 Jan 2.

PMID:
23796033
2.

Structural Reorganization and Fibrinogen Adsorption Behaviors on the Polyrotaxane Surfaces Investigated by Sum Frequency Generation Spectroscopy.

Ge A, Seo JH, Qiao L, Yui N, Ye S.

ACS Appl Mater Interfaces. 2015 Oct 14;7(40):22709-18. doi: 10.1021/acsami.5b07760. Epub 2015 Oct 2.

PMID:
26393413
3.

Mobility of the Arg-Gly-Asp ligand on the outermost surface of biomaterials suppresses integrin-mediated mechanotransduction and subsequent cell functions.

Kakinoki S, Seo JH, Inoue Y, Ishihara K, Yui N, Yamaoka T.

Acta Biomater. 2015 Feb;13:42-51. doi: 10.1016/j.actbio.2014.11.020. Epub 2014 Nov 25.

PMID:
25463493
4.

Inhibition of fibroblast cell adhesion on substrate by coating with 2-methacryloyloxyethyl phosphorylcholine polymers.

Ishihara K, Ishikawa E, Iwasaki Y, Nakabayashi N.

J Biomater Sci Polym Ed. 1999;10(10):1047-61.

PMID:
10591131
5.

The effect of molecular mobility of supramolecular polymer surfaces on fibroblast adhesion.

Seo JH, Yui N.

Biomaterials. 2013 Jan;34(1):55-63. doi: 10.1016/j.biomaterials.2012.09.063. Epub 2012 Oct 15.

PMID:
23079667
6.

Preparation and surface properties of polyrotaxane-containing tri-block copolymers as a design for dynamic biomaterials surfaces.

Inoue Y, Ye L, Ishihara K, Yui N.

Colloids Surf B Biointerfaces. 2012 Jan 1;89:223-7. doi: 10.1016/j.colsurfb.2011.09.020. Epub 2011 Sep 21.

PMID:
21974908
7.

Platelet responses to dynamic biomaterial surfaces with different poly(ethylene glycol) and polyrotaxane molecular architectures constructed on gold substrates.

Kakinoki S, Yui N, Yamaoka T.

J Biomater Appl. 2013 Nov;28(4):544-51. doi: 10.1177/0885328212462260. Epub 2012 Oct 9.

PMID:
23048065
8.

Cell adhesion control on photoreactive phospholipid polymer surfaces.

Byambaa B, Konno T, Ishihara K.

Colloids Surf B Biointerfaces. 2012 Nov 1;99:1-6. doi: 10.1016/j.colsurfb.2011.08.029. Epub 2011 Sep 8.

PMID:
21982212
9.

The significance of hydrated surface molecular mobility in the control of the morphology of adhering fibroblasts.

Seo JH, Kakinoki S, Inoue Y, Nam K, Yamaoka T, Ishihara K, Kishida A, Yui N.

Biomaterials. 2013 Apr;34(13):3206-14. doi: 10.1016/j.biomaterials.2013.01.080. Epub 2013 Feb 12.

PMID:
23410683
10.

Biomembrane mimetic polymer poly (2-methacryloyloxyethyl phosphorylcholine-co-n-butyl methacrylate) at the interface of polyurethane surfaces.

Lee I, Kobayashi K, Sun HY, Takatani S, Zhong LG.

J Biomed Mater Res A. 2007 Aug;82(2):316-22.

PMID:
17295222
11.

The effect of the chemical structure of the phospholipid polymer on fibronectin adsorption and fibroblast adhesion on the gradient phospholipid surface.

Iwasaki Y, Sawada S, Nakabayashi N, Khang G, Lee HB, Ishihara K.

Biomaterials. 1999 Nov;20(22):2185-91.

PMID:
10555087
12.

Protein adsorption and cell adhesion on cationic, neutral, and anionic 2-methacryloyloxyethyl phosphorylcholine copolymer surfaces.

Xu Y, Takai M, Ishihara K.

Biomaterials. 2009 Oct;30(28):4930-8. doi: 10.1016/j.biomaterials.2009.06.005. Epub 2009 Jun 26.

PMID:
19560198
13.

Cell adhesion on phase-separated surface of block copolymer composed of poly(2-methacryloyloxyethyl phosphorylcholine) and poly(dimethylsiloxane).

Seo JH, Matsuno R, Takai M, Ishihara K.

Biomaterials. 2009 Oct;30(29):5330-40. doi: 10.1016/j.biomaterials.2009.06.031. Epub 2009 Jul 9.

PMID:
19592090
14.

Analysis of the biological response of endothelial and fibroblast cells cultured on synthetic scaffolds with various hydrophilic/hydrophobic ratios: influence of fibronectin adsorption and conformation.

Campillo-Fernández AJ, Unger RE, Peters K, Halstenberg S, Santos M, Salmerón Sánchez M, Meseguer Dueñas JM, Monleón Pradas M, Gómez Ribelles JL, Kirkpatrick CJ.

Tissue Eng Part A. 2009 Jun;15(6):1331-41. doi: 10.1089/ten.tea.2008.0146.

PMID:
18976156
15.

Physical and biological properties of compound membranes incorporating a copolymer with a phosphorylcholine head group.

Zhang SF, Rolfe P, Wright G, Lian W, Milling AJ, Tanaka S, Ishihara K.

Biomaterials. 1998 Apr-May;19(7-9):691-700.

PMID:
9663742
16.

Selective biorecognition and preservation of cell function on carbohydrate-immobilized phosphorylcholine polymers.

Iwasaki Y, Takami U, Shinohara Y, Kurita K, Akiyoshi K.

Biomacromolecules. 2007 Sep;8(9):2788-94. Epub 2007 Jul 31.

PMID:
17663529
17.

Poly(ethylene glycol) hydrogels cross-linked by hydrolyzable polyrotaxane containing hydroxyapatite particles as scaffolds for bone regeneration.

Fujimoto M, Isobe M, Yamaguchi S, Amagasa T, Watanabe A, Ooya T, Yui N.

J Biomater Sci Polym Ed. 2005;16(12):1611-21.

PMID:
16366340
18.

Copolymer coatings consisting of 2-methacryloyloxyethyl phosphorylcholine and 3-methacryloxypropyl trimethoxysilane via ATRP to improve cellulose biocompatibility.

Yuan B, Chen Q, Ding WQ, Liu PS, Wu SS, Lin SC, Shen J, Gai Y.

ACS Appl Mater Interfaces. 2012 Aug;4(8):4031-9. doi: 10.1021/am3008399. Epub 2012 Aug 13.

PMID:
22856677
19.

Biocompatibility and drug release behavior of spontaneously formed phospholipid polymer hydrogels.

Kimura M, Takai M, Ishihara K.

J Biomed Mater Res A. 2007 Jan;80(1):45-54.

PMID:
16958047
20.

Rapid development of hydrophilicity and protein adsorption resistance by polymer surfaces bearing phosphorylcholine and naphthalene groups.

Futamura K, Matsuno R, Konno T, Takai M, Ishihara K.

Langmuir. 2008 Sep 16;24(18):10340-4. doi: 10.1021/la801017h. Epub 2008 Aug 13.

PMID:
18698868

Supplemental Content

Support Center