Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 233

1.

Hematite-NiO/α-Ni(OH)2 heterostructure photoanodes with high electrocatalytic current density and charge storage capacity.

Bora DK, Braun A, Erni R, Müller U, Döbeli M, Constable EC.

Phys Chem Chem Phys. 2013 Aug 14;15(30):12648-59. doi: 10.1039/c3cp52179f.

PMID:
23788236
2.

Efficient photoelectrochemical water splitting with ultrathin films of hematite on three-dimensional nanophotonic structures.

Qiu Y, Leung SF, Zhang Q, Hua B, Lin Q, Wei Z, Tsui KH, Zhang Y, Yang S, Fan Z.

Nano Lett. 2014;14(4):2123-9. doi: 10.1021/nl500359e. Epub 2014 Mar 11.

PMID:
24601797
3.

Lattice defect-enhanced hydrogen production in nanostructured hematite-based photoelectrochemical device.

Wang P, Wang D, Lin J, Li X, Peng C, Gao X, Huang Q, Wang J, Xu H, Fan C.

ACS Appl Mater Interfaces. 2012 Apr;4(4):2295-302. doi: 10.1021/am300395p. Epub 2012 Apr 3.

PMID:
22452535
4.

Surface Modification of CoO(x) Loaded BiVO₄ Photoanodes with Ultrathin p-Type NiO Layers for Improved Solar Water Oxidation.

Zhong M, Hisatomi T, Kuang Y, Zhao J, Liu M, Iwase A, Jia Q, Nishiyama H, Minegishi T, Nakabayashi M, Shibata N, Niishiro R, Katayama C, Shibano H, Katayama M, Kudo A, Yamada T, Domen K.

J Am Chem Soc. 2015 Apr 22;137(15):5053-60. doi: 10.1021/jacs.5b00256. Epub 2015 Apr 9.

PMID:
25802975
5.

Light harvesting proteins for solar fuel generation in bioengineered photoelectrochemical cells.

Ihssen J, Braun A, Faccio G, Gajda-Schrantz K, Thöny-Meyer L.

Curr Protein Pept Sci. 2014;15(4):374-84. Review.

6.

Uniform Doping of Titanium in Hematite Nanorods for Efficient Photoelectrochemical Water Splitting.

Wang D, Chen H, Chang G, Lin X, Zhang Y, Aldalbahi A, Peng C, Wang J, Fan C.

ACS Appl Mater Interfaces. 2015 Jul 1;7(25):14072-8. doi: 10.1021/acsami.5b03298. Epub 2015 Jun 19.

PMID:
26052922
7.

Engineered Hematite Mesoporous Single Crystals Drive Drastic Enhancement in Solar Water Splitting.

Wang CW, Yang S, Fang WQ, Liu P, Zhao H, Yang HG.

Nano Lett. 2016 Jan 13;16(1):427-33. doi: 10.1021/acs.nanolett.5b04059. Epub 2015 Dec 14.

PMID:
26654272
8.

Atomically Altered Hematite for Highly Efficient Perovskite Tandem Water-Splitting Devices.

Gurudayal, John RA, Boix PP, Yi C, Shi C, Scott MC, Veldhuis SA, Minor AM, Zakeeruddin SM, Wong LH, Grätzel M, Mathews N.

ChemSusChem. 2017 Jun 9;10(11):2449-2456. doi: 10.1002/cssc.201700159. Epub 2017 May 12.

PMID:
28371520
9.

Toward High-Performance Hematite Nanotube Photoanodes: Charge-Transfer Engineering at Heterointerfaces.

Kim do H, Andoshe DM, Shim YS, Moon CW, Sohn W, Choi S, Kim TL, Lee M, Park H, Hong K, Kwon KC, Suh JM, Kim JS, Lee JH, Jang HW.

ACS Appl Mater Interfaces. 2016 Sep 14;8(36):23793-800. doi: 10.1021/acsami.6b05366. Epub 2016 Aug 29.

PMID:
27551887
10.

n-Fe₂O₃ to N⁺-TiO₂Heterojunction Photoanode for Photoelectrochemical Water Oxidation.

Yang JS, Lin WH, Lin CY, Wang BS, Wu JJ.

ACS Appl Mater Interfaces. 2015 Jun 24;7(24):13314-21. doi: 10.1021/acsami.5b01489. Epub 2015 Jun 10.

PMID:
26027640
11.

Revealing the Role of TiO2 Surface Treatment of Hematite Nanorods Photoanodes for Solar Water Splitting.

Li X, Bassi PS, Boix PP, Fang Y, Wong LH.

ACS Appl Mater Interfaces. 2015 Aug 12;7(31):16960-6. doi: 10.1021/acsami.5b01394. Epub 2015 Jul 30.

PMID:
26192330
12.

Constructing inverse opal structured hematite photoanodes via electrochemical process and their application to photoelectrochemical water splitting.

Shi X, Zhang K, Shin K, Moon JH, Lee TW, Park JH.

Phys Chem Chem Phys. 2013 Jul 28;15(28):11717-22. doi: 10.1039/c3cp50459j.

PMID:
23752489
13.

Formation of an electron hole doped film in the α-Fe2O3 photoanode upon electrochemical oxidation.

Gajda-Schrantz K, Tymen S, Boudoire F, Toth R, Bora DK, Calvet W, Grätzel M, Constable EC, Braun A.

Phys Chem Chem Phys. 2013 Feb 7;15(5):1443-51. doi: 10.1039/c2cp42597a. Epub 2012 Nov 20.

PMID:
23165453
14.

Core-shell hematite nanorods: a simple method to improve the charge transfer in the photoanode for photoelectrochemical water splitting.

Gurudayal, Chee PM, Boix PP, Ge H, Yanan F, Barber J, Wong LH.

ACS Appl Mater Interfaces. 2015 Apr 1;7(12):6852-9. doi: 10.1021/acsami.5b00417. Epub 2015 Mar 20.

PMID:
25790720
15.

Low-Temperature Atomic Layer Deposition of Crystalline and Photoactive Ultrathin Hematite Films for Solar Water Splitting.

Steier L, Luo J, Schreier M, Mayer MT, Sajavaara T, Grätzel M.

ACS Nano. 2015 Dec 22;9(12):11775-83. doi: 10.1021/acsnano.5b03694. Epub 2015 Nov 16.

PMID:
26516784
16.

A Facile Surface Passivation of Hematite Photoanodes with TiO2 Overlayers for Efficient Solar Water Splitting.

Ahmed MG, Kretschmer IE, Kandiel TA, Ahmed AY, Rashwan FA, Bahnemann DW.

ACS Appl Mater Interfaces. 2015 Nov 4;7(43):24053-62. doi: 10.1021/acsami.5b07065. Epub 2015 Oct 21.

PMID:
26488924
17.

Enhanced Bulk and Interfacial Charge Transfer Dynamics for Efficient Photoelectrochemical Water Splitting: The Case of Hematite Nanorod Arrays.

Wang J, Feng B, Su J, Guo L.

ACS Appl Mater Interfaces. 2016 Sep 7;8(35):23143-50. doi: 10.1021/acsami.6b07723. Epub 2016 Aug 25.

PMID:
27508404
18.

Iron based photoanodes for solar fuel production.

Bassi PS, Gurudayal, Wong LH, Barber J.

Phys Chem Chem Phys. 2014 Jun 28;16(24):11834-42. doi: 10.1039/c3cp55174a.

PMID:
24469680
19.

Photoelectrochemical water splitting with mesoporous hematite prepared by a solution-based colloidal approach.

Sivula K, Zboril R, Le Formal F, Robert R, Weidenkaff A, Tucek J, Frydrych J, Grätzel M.

J Am Chem Soc. 2010 Jun 2;132(21):7436-44. doi: 10.1021/ja101564f.

PMID:
20443599
20.

In situ growth of matchlike ZnO/Au plasmonic heterostructure for enhanced photoelectrochemical water splitting.

Wu M, Chen WJ, Shen YH, Huang FZ, Li CH, Li SK.

ACS Appl Mater Interfaces. 2014 Sep 10;6(17):15052-60. doi: 10.1021/am503044f. Epub 2014 Aug 21.

PMID:
25144940

Supplemental Content

Support Center