Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 128

1.

Synthesis and characterization of 9 nm Pt-Ni octahedra with a record high activity of 3.3 A/mg(Pt) for the oxygen reduction reaction.

Choi SI, Xie S, Shao M, Odell JH, Lu N, Peng HC, Protsailo L, Guerrero S, Park J, Xia X, Wang J, Kim MJ, Xia Y.

Nano Lett. 2013 Jul 10;13(7):3420-5. doi: 10.1021/nl401881z. Epub 2013 Jun 24.

PMID:
23786155
2.

Synthesis of Pt-Ni Octahedra in Continuous-Flow Droplet Reactors for the Scalable Production of Highly Active Catalysts toward Oxygen Reduction.

Niu G, Zhou M, Yang X, Park J, Lu N, Wang J, Kim MJ, Wang L, Xia Y.

Nano Lett. 2016 Jun 8;16(6):3850-7. doi: 10.1021/acs.nanolett.6b01340. Epub 2016 May 4.

PMID:
27135156
3.

Controlling the size and composition of nanosized Pt-Ni octahedra to optimize their catalytic activities toward the oxygen reduction reaction.

Choi SI, Xie S, Shao M, Lu N, Guerrero S, Odell JH, Park J, Wang J, Kim MJ, Xia Y.

ChemSusChem. 2014 May;7(5):1476-83. doi: 10.1002/cssc.201400051. Epub 2014 Mar 18.

PMID:
24644079
4.

Synthesis and characterization of Pd@Pt-Ni core-shell octahedra with high activity toward oxygen reduction.

Choi SI, Shao M, Lu N, Ruditskiy A, Peng HC, Park J, Guerrero S, Wang J, Kim MJ, Xia Y.

ACS Nano. 2014 Oct 28;8(10):10363-71. doi: 10.1021/nn5036894. Epub 2014 Sep 26.

PMID:
25247667
5.

Structural Evolution of Sub-10 nm Octahedral Platinum-Nickel Bimetallic Nanocrystals.

Chang Q, Xu Y, Duan Z, Xiao F, Fu F, Hong Y, Kim J, Choi SI, Su D, Shao M.

Nano Lett. 2017 Jun 14;17(6):3926-3931. doi: 10.1021/acs.nanolett.7b01510. Epub 2017 May 16.

PMID:
28493711
6.

Coating Pt-Ni Octahedra with Ultrathin Pt Shells to Enhance the Durability without Compromising the Activity toward Oxygen Reduction.

Park J, Liu J, Peng HC, Figueroa-Cosme L, Miao S, Choi SI, Bao S, Yang X, Xia Y.

ChemSusChem. 2016 Aug 23;9(16):2209-15. doi: 10.1002/cssc.201600566. Epub 2016 Jul 27.

PMID:
27460459
7.

Monodisperse core/shell Ni/FePt nanoparticles and their conversion to Ni/Pt to catalyze oxygen reduction.

Zhang S, Hao Y, Su D, Doan-Nguyen VV, Wu Y, Li J, Sun S, Murray CB.

J Am Chem Soc. 2014 Nov 12;136(45):15921-4. doi: 10.1021/ja5099066. Epub 2014 Nov 3.

PMID:
25350678
8.

Rh-Doped Pt-Ni Octahedral Nanoparticles: Understanding the Correlation between Elemental Distribution, Oxygen Reduction Reaction, and Shape Stability.

Beermann V, Gocyla M, Willinger E, Rudi S, Heggen M, Dunin-Borkowski RE, Willinger MG, Strasser P.

Nano Lett. 2016 Mar 9;16(3):1719-25. doi: 10.1021/acs.nanolett.5b04636. Epub 2016 Feb 15.

PMID:
26854940
9.

Synthesis and oxygen reduction activity of shape-controlled Pt(3)Ni nanopolyhedra.

Zhang J, Yang H, Fang J, Zou S.

Nano Lett. 2010 Feb 10;10(2):638-44. doi: 10.1021/nl903717z.

PMID:
20078068
10.

Composition tunable ternary Pt-Ni-Co octahedra for optimized oxygen reduction activity.

Zhao Z, Feng M, Zhou J, Liu Z, Li M, Fan Z, Tsen O, Miao J, Duan X, Huang Y.

Chem Commun (Camb). 2016 Sep 13;52(75):11215-11218.

PMID:
27722573
11.

Platinum-based oxygen reduction electrocatalysts.

Wu J, Yang H.

Acc Chem Res. 2013 Aug 20;46(8):1848-57. doi: 10.1021/ar300359w. Epub 2013 Jun 28. Review.

PMID:
23808919
12.

Tuning the Electrocatalytic Oxygen Reduction Reaction Activity and Stability of Shape-Controlled Pt-Ni Nanoparticles by Thermal Annealing - Elucidating the Surface Atomic Structural and Compositional Changes.

Beermann V, Gocyla M, Kühl S, Padgett E, Schmies H, Goerlin M, Erini N, Shviro M, Heggen M, Dunin-Borkowski RE, Muller DA, Strasser P.

J Am Chem Soc. 2017 Nov 22;139(46):16536-16547. doi: 10.1021/jacs.7b06846. Epub 2017 Nov 7.

PMID:
29019692
13.

Atomic layer-by-layer deposition of platinum on palladium octahedra for enhanced catalysts toward the oxygen reduction reaction.

Park J, Zhang L, Choi SI, Roling LT, Lu N, Herron JA, Xie S, Wang J, Kim MJ, Mavrikakis M, Xia Y.

ACS Nano. 2015 Mar 24;9(3):2635-47. doi: 10.1021/nn506387w. Epub 2015 Feb 16.

PMID:
25661922
14.

Octahedral PtNi nanoparticle catalysts: exceptional oxygen reduction activity by tuning the alloy particle surface composition.

Cui C, Gan L, Li HH, Yu SH, Heggen M, Strasser P.

Nano Lett. 2012 Nov 14;12(11):5885-9. doi: 10.1021/nl3032795. Epub 2012 Oct 16.

PMID:
23062102
15.

Polyelectrolyte assisted synthesis and enhanced oxygen reduction activity of Pt nanocrystals with controllable shape and size.

Du L, Zhang S, Chen G, Yin G, Du C, Tan Q, Sun Y, Qu Y, Gao Y.

ACS Appl Mater Interfaces. 2014 Aug 27;6(16):14043-9. doi: 10.1021/am503372f. Epub 2014 Jul 31.

PMID:
25058739
16.

Newly Designed Graphene Cellular Monolith Functionalized with Hollow Pt-M (M = Ni, Co) Nanoparticles as the Electrocatalyst for Oxygen Reduction Reaction.

Zhou Y, Yang J, Zhu C, Du D, Cheng X, Yen CH, Wai CM, Lin Y.

ACS Appl Mater Interfaces. 2016 Oct 5;8(39):25863-25874. Epub 2016 Sep 21.

PMID:
27610707
17.

Control of the composition of Pt-Ni electrocatalysts in surfactant-free synthesis using neat N-formylpiperidine.

Zhang N, Tsao KC, Pan YT, Yang H.

Nanoscale. 2016 Feb 7;8(5):2548-53. doi: 10.1039/c5nr08362a.

PMID:
26758678
18.

Quantitative Analysis of the Reduction Kinetics Responsible for the One-Pot Synthesis of Pd-Pt Bimetallic Nanocrystals with Different Structures.

Zhou M, Wang H, Vara M, Hood ZD, Luo M, Yang TH, Bao S, Chi M, Xiao P, Zhang Y, Xia Y.

J Am Chem Soc. 2016 Sep 21;138(37):12263-70. doi: 10.1021/jacs.6b07213. Epub 2016 Sep 12.

PMID:
27568848
19.

Synthetic control of FePtM nanorods (M = Cu, Ni) to enhance the oxygen reduction reaction.

Zhu H, Zhang S, Guo S, Su D, Sun S.

J Am Chem Soc. 2013 May 15;135(19):7130-3. doi: 10.1021/ja403041g. Epub 2013 May 2.

PMID:
23634823
20.

Truncated octahedral Pt(3)Ni oxygen reduction reaction electrocatalysts.

Wu J, Zhang J, Peng Z, Yang S, Wagner FT, Yang H.

J Am Chem Soc. 2010 Apr 14;132(14):4984-5. doi: 10.1021/ja100571h.

PMID:
20334375

Supplemental Content

Support Center