Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 96

1.

Landscape of transcriptional deregulations in the preeclamptic placenta.

Vaiman D, Calicchio R, Miralles F.

PLoS One. 2013 Jun 13;8(6):e65498. doi: 10.1371/journal.pone.0065498. Print 2013.

2.

Nucleotide excision repair/transcription gene defects in the fetus and impaired TFIIH-mediated function in transcription in placenta leading to preeclampsia.

Moslehi R, Ambroggio X, Nagarajan V, Kumar A, Dzutsev A.

BMC Genomics. 2014 May 15;15:373. doi: 10.1186/1471-2164-15-373.

3.

Differential expression of calcium transport channels in placenta primary cells and tissues derived from preeclamptic placenta.

Yang H, Kim TH, An BS, Choi KC, Lee HH, Kim JM, Jeung EB.

Mol Cell Endocrinol. 2013 Mar 10;367(1-2):21-30. doi: 10.1016/j.mce.2012.12.012. Epub 2012 Dec 23.

PMID:
23267838
4.

Differential placental gene expression in severe preeclampsia.

Sitras V, Paulssen RH, Grønaas H, Leirvik J, Hanssen TA, Vårtun A, Acharya G.

Placenta. 2009 May;30(5):424-33. doi: 10.1016/j.placenta.2009.01.012. Epub 2009 Feb 26.

PMID:
19249095
5.

Global gene expression analysis and regulation of the principal genes expressed in bovine placenta in relation to the transcription factor AP-2 family.

Ushizawa K, Takahashi T, Hosoe M, Ishiwata H, Kaneyama K, Kizaki K, Hashizume K.

Reprod Biol Endocrinol. 2007 Apr 27;5:17.

7.

Seven placental transcripts characterize HELLP-syndrome.

Buimer M, Keijser R, Jebbink JM, Wehkamp D, van Kampen AH, Boer K, van der Post JA, Ris-Stalpers C.

Placenta. 2008 May;29(5):444-53. doi: 10.1016/j.placenta.2008.02.007.

PMID:
18374411
8.

Three mechanisms in the pathogenesis of pre-eclampsia suggested by over-represented transcription factor-binding sites detected with comparative promoter analysis.

Vásárhelyi B, Cseh A, Kocsis I, Treszl A, Györffy B, Rigó J Jr.

Mol Hum Reprod. 2006 Jan;12(1):31-4. Epub 2006 Jan 10.

PMID:
16403800
9.

STOX1 overexpression in choriocarcinoma cells mimics transcriptional alterations observed in preeclamptic placentas.

Rigourd V, Chauvet C, Chelbi ST, Rebourcet R, Mondon F, Letourneur F, Mignot TM, Barbaux S, Vaiman D.

PLoS One. 2008;3(12):e3905. doi: 10.1371/journal.pone.0003905. Epub 2008 Dec 11.

10.

A hierarchical analysis of transcriptome alterations in intrauterine growth restriction (IUGR) reveals common pathophysiological pathways in mammals.

Buffat C, Mondon F, Rigourd V, Boubred F, Bessières B, Fayol L, Feuerstein JM, Gamerre M, Jammes H, Rebourcet R, Miralles F, Courbières B, Basire A, Dignat-Georges F, Carbonne B, Simeoni U, Vaiman D.

J Pathol. 2007 Nov;213(3):337-46.

PMID:
17893880
11.

Altered gene expression of caspase-10, death receptor-3 and IGFBP-3 in preeclamptic placentas.

Han JY, Kim YS, Cho GJ, Roh GS, Kim HJ, Choi WJ, Paik WY, Rho GJ, Kang SS, Choi WS.

Mol Cells. 2006 Oct 31;22(2):168-74.

12.

Plasma factors in severe early-onset preeclampsia do not substantially alter endothelial gene expression in vitro.

Donker RB, Asgeirsdóttir SA, Gerbens F, van Pampus MG, Kallenberg CG, te Meerman GJ, Aarnoudse JG, Molema G.

J Soc Gynecol Investig. 2005 Feb;12(2):98-106.

PMID:
15695104
13.

Increased neutrophil-endothelial adhesion induced by placental factors is mediated by platelet-activating factor in preeclampsia.

Wang Y, Adair CD, Weeks JW, Lewis DF, Alexander JS.

J Soc Gynecol Investig. 1999 May-Jun;6(3):136-41.

PMID:
10376269
14.

Placental miR-106a∼363 cluster is dysregulated in preeclamptic placenta.

Zhang C, Li Q, Ren N, Li C, Wang X, Xie M, Gao Z, Pan Z, Zhao C, Ren C, Yang W.

Placenta. 2015 Feb;36(2):250-2. doi: 10.1016/j.placenta.2014.11.020. Epub 2014 Dec 3.

PMID:
25499681
15.

Expression profiling of autophagy associated genes in placentas of preeclampsia.

Goldman-Wohl D, Cesla T, Smith Y, Greenfield C, Dechend R, Staff AC, Sugulle M, Weedon-Fekjær MS, Johnsen GM, Yagel S, Haimov-Kochman R.

Placenta. 2013 Oct;34(10):959-62. doi: 10.1016/j.placenta.2013.07.069. Epub 2013 Aug 15.

PMID:
23953864
16.

Extra-placental expression of vascular endothelial growth factor receptor-1, (Flt-1) and soluble Flt-1 (sFlt-1), by peripheral blood mononuclear cells (PBMCs) in normotensive and preeclamptic pregnant women.

Rajakumar A, Michael HM, Rajakumar PA, Shibata E, Hubel CA, Karumanchi SA, Thadhani R, Wolf M, Harger G, Markovic N.

Placenta. 2005 Aug;26(7):563-73.

PMID:
15993706
17.

Meta-Analysis of Placental Transcriptome Data Identifies a Novel Molecular Pathway Related to Preeclampsia.

van Uitert M, Moerland PD, Enquobahrie DA, Laivuori H, van der Post JA, Ris-Stalpers C, Afink GB.

PLoS One. 2015 Jul 14;10(7):e0132468. doi: 10.1371/journal.pone.0132468. eCollection 2015.

18.

Epigenetics and Preeclampsia: Defining Functional Epimutations in the Preeclamptic Placenta Related to the TGF-β Pathway.

Martin E, Ray PD, Smeester L, Grace MR, Boggess K, Fry RC.

PLoS One. 2015 Oct 28;10(10):e0141294. doi: 10.1371/journal.pone.0141294. eCollection 2015.

19.

Evidence for the functional activity of hypoxia-inducible transcription factors overexpressed in preeclamptic placentae.

Rajakumar A, Brandon HM, Daftary A, Ness R, Conrad KP.

Placenta. 2004 Nov;25(10):763-9.

PMID:
15451190
20.

Comparative profiling of metabolism-related gene expression in pre-eclamptic and normal pregnancies.

Pang ZJ, Xing FQ.

Arch Gynecol Obstet. 2004 Jan;269(2):91-5. Epub 2002 Nov 9.

PMID:
14648175

Supplemental Content

Support Center