Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 100

1.

Causes and consequences of chromatin variation between inbred mice.

Hosseini M, Goodstadt L, Hughes JR, Kowalczyk MS, de Gobbi M, Otto GW, Copley RR, Mott R, Higgs DR, Flint J.

PLoS Genet. 2013 Jun;9(6):e1003570. doi: 10.1371/journal.pgen.1003570. Epub 2013 Jun 13.

2.

Open chromatin in plant genomes.

Zhang W, Zhang T, Wu Y, Jiang J.

Cytogenet Genome Res. 2014;143(1-3):18-27. doi: 10.1159/000362827. Epub 2014 Jun 6. Review.

PMID:
24923879
3.

Extensive evolutionary changes in regulatory element activity during human origins are associated with altered gene expression and positive selection.

Shibata Y, Sheffield NC, Fedrigo O, Babbitt CC, Wortham M, Tewari AK, London D, Song L, Lee BK, Iyer VR, Parker SC, Margulies EH, Wray GA, Furey TS, Crawford GE.

PLoS Genet. 2012 Jun;8(6):e1002789. doi: 10.1371/journal.pgen.1002789. Epub 2012 Jun 28.

4.

The 'dark matter' in the plant genomes: non-coding and unannotated DNA sequences associated with open chromatin.

Jiang J.

Curr Opin Plant Biol. 2015 Apr;24:17-23. doi: 10.1016/j.pbi.2015.01.005. Epub 2015 Jan 24. Review.

PMID:
25625239
5.

The accessible chromatin landscape of the human genome.

Thurman RE, Rynes E, Humbert R, Vierstra J, Maurano MT, Haugen E, Sheffield NC, Stergachis AB, Wang H, Vernot B, Garg K, John S, Sandstrom R, Bates D, Boatman L, Canfield TK, Diegel M, Dunn D, Ebersol AK, Frum T, Giste E, Johnson AK, Johnson EM, Kutyavin T, Lajoie B, Lee BK, Lee K, London D, Lotakis D, Neph S, Neri F, Nguyen ED, Qu H, Reynolds AP, Roach V, Safi A, Sanchez ME, Sanyal A, Shafer A, Simon JM, Song L, Vong S, Weaver M, Yan Y, Zhang Z, Zhang Z, Lenhard B, Tewari M, Dorschner MO, Hansen RS, Navas PA, Stamatoyannopoulos G, Iyer VR, Lieb JD, Sunyaev SR, Akey JM, Sabo PJ, Kaul R, Furey TS, Dekker J, Crawford GE, Stamatoyannopoulos JA.

Nature. 2012 Sep 6;489(7414):75-82. doi: 10.1038/nature11232.

6.

Gammaretroviral vector integration occurs overwhelmingly within and near DNase hypersensitive sites.

Liu M, Li CL, Stamatoyannopoulos G, Dorschner MO, Humbert R, Stamatoyannopoulos JA, Emery DW.

Hum Gene Ther. 2012 Feb;23(2):231-7. doi: 10.1089/hum.2010.177. Epub 2011 Dec 14.

7.

Genome-wide detection of DNase I hypersensitive sites in single cells and FFPE tissue samples.

Jin W, Tang Q, Wan M, Cui K, Zhang Y, Ren G, Ni B, Sklar J, Przytycka TM, Childs R, Levens D, Zhao K.

Nature. 2015 Dec 3;528(7580):142-6. doi: 10.1038/nature15740.

8.

DNase I digestion of isolated nulcei for genome-wide mapping of DNase hypersensitivity sites in chromatin.

Ling G, Waxman DJ.

Methods Mol Biol. 2013;977:21-33. doi: 10.1007/978-1-62703-284-1_3.

9.

Evaluation of potential regulatory elements identified as DNase I hypersensitive sites in the CFTR gene.

Phylactides M, Rowntree R, Nuthall H, Ussery D, Wheeler A, Harris A.

Eur J Biochem. 2002 Jan;269(2):553-9.

10.

In vivo analysis of DNase I hypersensitive sites in the human CFTR gene.

Moulin DS, Manson AL, Nuthall HN, Smith DJ, Huxley C, Harris A.

Mol Med. 1999 Apr;5(4):211-23.

11.

Isolation of nuclei for use in genome-wide DNase hypersensitivity assays to probe chromatin structure.

Ling G, Waxman DJ.

Methods Mol Biol. 2013;977:13-9. doi: 10.1007/978-1-62703-284-1_2.

12.
13.

Prediction of DNase I hypersensitive sites by using pseudo nucleotide compositions.

Feng P, Jiang N, Liu N.

ScientificWorldJournal. 2014;2014:740506. doi: 10.1155/2014/740506. Epub 2014 Aug 19.

15.

Patterns of regulatory activity across diverse human cell types predict tissue identity, transcription factor binding, and long-range interactions.

Sheffield NC, Thurman RE, Song L, Safi A, Stamatoyannopoulos JA, Lenhard B, Crawford GE, Furey TS.

Genome Res. 2013 May;23(5):777-88. doi: 10.1101/gr.152140.112. Epub 2013 Mar 12.

16.

DNase‚ÄČI sensitivity QTLs are a major determinant of human expression variation.

Degner JF, Pai AA, Pique-Regi R, Veyrieras JB, Gaffney DJ, Pickrell JK, De Leon S, Michelini K, Lewellen N, Crawford GE, Stephens M, Gilad Y, Pritchard JK.

Nature. 2012 Feb 5;482(7385):390-4. doi: 10.1038/nature10808.

17.

Rapid and unambiguous detection of DNase I hypersensitive site in rare population of cells.

Zeng WP, McFarland MM.

PLoS One. 2014 Jan 21;9(1):e85740. doi: 10.1371/journal.pone.0085740. eCollection 2014.

18.

Systematic localization of common disease-associated variation in regulatory DNA.

Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H, Reynolds AP, Sandstrom R, Qu H, Brody J, Shafer A, Neri F, Lee K, Kutyavin T, Stehling-Sun S, Johnson AK, Canfield TK, Giste E, Diegel M, Bates D, Hansen RS, Neph S, Sabo PJ, Heimfeld S, Raubitschek A, Ziegler S, Cotsapas C, Sotoodehnia N, Glass I, Sunyaev SR, Kaul R, Stamatoyannopoulos JA.

Science. 2012 Sep 7;337(6099):1190-5. doi: 10.1126/science.1222794. Epub 2012 Sep 5.

19.
20.

Genome-wide mapping of DNase I hypersensitive sites in plants.

Zhang W, Jiang J.

Methods Mol Biol. 2015;1284:71-89. doi: 10.1007/978-1-4939-2444-8_4.

PMID:
25757768

Supplemental Content

Support Center