Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 96

1.

Multi-plate freeze concentration: Recovery of solutes occluded in the ice and determination of thawing time.

Gulfo R, Auleda JM, Moreno FL, Ruiz Y, Hernández E, Raventós M.

Food Sci Technol Int. 2014 Sep;20(6):405-19. doi: 10.1177/1082013213489127. Epub 2013 Jun 19.

PMID:
23785068
2.

Investigation of PEG crystallization in frozen PEG-sucrose-water solutions: II. Characterization of the equilibrium behavior during freeze-thawing.

Bhatnagar BS, Martin SM, Teagarden DL, Shalaev EY, Suryanarayanan R.

J Pharm Sci. 2010 Nov;99(11):4510-24. doi: 10.1002/jps.22182.

PMID:
20845450
3.
4.

Effect of freezing and thawing rates on denaturation of proteins in aqueous solutions.

Cao E, Chen Y, Cui Z, Foster PR.

Biotechnol Bioeng. 2003 Jun 20;82(6):684-90.

PMID:
12673768
6.

Impact of heat treatment on the physical properties of noncrystalline multisolute systems concentrated in frozen aqueous solutions.

Izutsu K, Yomota C, Kawanishi T.

J Pharm Sci. 2011 Dec;100(12):5244-53. doi: 10.1002/jps.22706. Epub 2011 Jul 20.

PMID:
21780120
7.

Investigation of PEG crystallization in frozen PEG-sucrose-water solutions. I. Characterization of the nonequilibrium behavior during freeze-thawing.

Bhatnagar BS, Martin SM, Teagarden DL, Shalaev EY, Suryanarayanan R.

J Pharm Sci. 2010 Jun;99(6):2609-19. doi: 10.1002/jps.22040.

PMID:
20091827
8.

Protein purification process engineering. Freeze drying: A practical overview.

Gatlin LA, Nail SL.

Bioprocess Technol. 1994;18:317-67. Review.

PMID:
7764173
9.

Protection of polyphenols in blueberry juice by vacuum-assisted block freeze concentration.

Orellana-Palma P, Petzold G, Pierre L, Pensaben JM.

Food Chem Toxicol. 2017 Nov;109(Pt 2):1093-1102. doi: 10.1016/j.fct.2017.03.038. Epub 2017 Mar 23.

PMID:
28344085
10.
11.

Cryoprotection of phosphofructokinase with organic solutes: characterization of enhanced protection in the presence of divalent cations.

Carpenter JF, Hand SC, Crowe LM, Crowe JH.

Arch Biochem Biophys. 1986 Nov 1;250(2):505-12.

PMID:
2946263
12.

Using singlet molecular oxygen to probe the solute and temperature dependence of liquid-like regions in/on ice.

Bower JP, Anastasio C.

J Phys Chem A. 2013 Aug 1;117(30):6612-21. doi: 10.1021/jp404071y. Epub 2013 Jul 22.

PMID:
23841666
13.

Freeze-drying using vacuum-induced surface freezing.

Kramer M, Sennhenn B, Lee G.

J Pharm Sci. 2002 Feb;91(2):433-43.

PMID:
11835203
14.

Mechanisms of freezing damage.

Pegg DE.

Symp Soc Exp Biol. 1987;41:363-78. Review.

PMID:
3332492
16.

Effects of solute concentration on the entrapment of solutes in phospholipid vesicles prepared by freeze-thaw extrusion.

Chapman CJ, Erdahl WE, Taylor RW, Pfeiffer DR.

Chem Phys Lipids. 1991 Dec;60(2):201-8.

PMID:
1814642
18.

Correction for solute/solvent interaction extends accurate freezing point depression theory to high concentration range.

Fullerton GD, Keener CR, Cameron IL.

J Biochem Biophys Methods. 1994 Dec;29(3-4):217-35.

PMID:
7699200
19.

The temperature of intracellular ice formation in mouse oocytes vs. the unfrozen fraction at that temperature.

Mazur P, Pinn IL, Kleinhans FW.

Cryobiology. 2007 Apr;54(2):223-33. Epub 2007 Feb 14.

20.

Low temperature light microscopy and its application to study freezing in aqueous solutions and biological cell suspensions.

Körber C, Englich S, Schwindke P, Scheiwe MW, Rau G, Hubel A, Cravalho EG.

J Microsc. 1986 Mar;141(Pt 3):263-76.

PMID:
3517347

Supplemental Content

Support Center