Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 171

1.

Mechanism for strong binding of CdSe quantum dots to multiwall carbon nanotubes for solar energy harvesting.

Azoz S, Jiang J, Keskar G, McEnally C, Alkas A, Ren F, Marinkovic N, Haller GL, Ismail-Beigi S, Pfefferle LD.

Nanoscale. 2013 Aug 7;5(15):6893-900. doi: 10.1039/c3nr00928a.

PMID:
23783269
2.

Quenching of photoluminescence in conjugates of quantum dots and single-walled carbon nanotube.

Biju V, Itoh T, Baba Y, Ishikawa M.

J Phys Chem B. 2006 Dec 28;110(51):26068-74.

PMID:
17181259
3.

Characterization of carbon nanotube-cdse hybrid nanomaterials.

Ki D, Bae JS, Rabbani MM, Nam DG, Ko CH, Yeum JH, Oh W.

J Nanosci Nanotechnol. 2012 Jul;12(7):5870-4.

PMID:
22966672
4.

Enhanced charge transfer kinetics of CdSe quantum dot-sensitized solar cell by inorganic ligand exchange treatments.

Yun HJ, Paik T, Edley ME, Baxter JB, Murray CB.

ACS Appl Mater Interfaces. 2014 Mar 12;6(5):3721-8. doi: 10.1021/am500026a. Epub 2014 Feb 4.

PMID:
24447012
5.

CdSe quantum dot-fullerene hybrid nanocomposite for solar energy conversion: electron transfer and photoelectrochemistry.

Bang JH, Kamat PV.

ACS Nano. 2011 Dec 27;5(12):9421-7. doi: 10.1021/nn204350w. Epub 2011 Nov 22.

PMID:
22107780
6.

Quantum dot modified multiwall carbon nanotubes.

Olek M, Büsgen T, Hilgendorff M, Giersig M.

J Phys Chem B. 2006 Jul 6;110(26):12901-4. Erratum in: J Phys Chem B Condens Matter Mater Surf Interfaces Biophys. 2006 Jul 6;110(26):12904.

PMID:
16805589
7.

Free-standing single-walled carbon nanotube-CdSe quantum dots hybrid ultrathin films for flexible optoelectronic conversion devices.

Shi Z, Liu C, Lv W, Shen H, Wang D, Chen L, Li LS, Jin J.

Nanoscale. 2012 Aug 7;4(15):4515-21. doi: 10.1039/c2nr30920c. Epub 2012 Jun 13.

PMID:
22695781
8.
9.

Energy relay from an unconventional yellow dye to CdS/CdSe quantum dots for enhanced solar cell performance.

Narayanan R, Das A, Deepa M, Srivastava AK.

Chemphyschem. 2013 Dec 2;14(17):4010-21. doi: 10.1002/cphc.201300605. Epub 2013 Nov 21.

PMID:
24259302
10.

Multicolored carbon nanotubes: decorating patterned carbon nanotube microstructures with quantum dots.

Lim X, Zhu Y, Cheong FC, Hanafiah NM, Valiyaveettil S, Sow CH.

ACS Nano. 2008 Jul;2(7):1389-95. doi: 10.1021/nn800101f.

PMID:
19206306
11.

Controlled assembly of CdSe/MWNT hybrid material and its fast photoresponse with wavelength selectivity.

Shim HC, Jeong S, Han CS.

Nanotechnology. 2011 Apr 22;22(16):165201. doi: 10.1088/0957-4484/22/16/165201. Epub 2011 Mar 11.

PMID:
21393816
12.

Investigating photoinduced charge transfer in carbon nanotube-perylene-quantum dot hybrid nanocomposites.

Weaver JE, Dasari MR, Datar A, Talapatra S, Kohli P.

ACS Nano. 2010 Nov 23;4(11):6883-93. doi: 10.1021/nn1020067. Epub 2010 Oct 14.

PMID:
20945933
13.

Organic-inorganic nanocomposites via directly grafting conjugated polymers onto quantum dots.

Xu J, Wang J, Mitchell M, Mukherjee P, Jeffries-El M, Petrich JW, Lin Z.

J Am Chem Soc. 2007 Oct 24;129(42):12828-33. Epub 2007 Oct 3.

PMID:
17914821
14.

Photostability of CdSe quantum dots functionalized with aromatic dithiocarbamate ligands.

Tan Y, Jin S, Hamers RJ.

ACS Appl Mater Interfaces. 2013 Dec 26;5(24):12975-83. doi: 10.1021/am403744g. Epub 2013 Dec 12.

PMID:
24256318
15.

Reduced charge recombination in a co-sensitized quantum dot solar cell with two different sizes of CdSe quantum dot.

Chen J, Lei W, Deng WQ.

Nanoscale. 2011 Feb;3(2):674-7. doi: 10.1039/c0nr00591f. Epub 2010 Dec 6.

PMID:
21132215
16.

Energy transfer from quantum dots to metal-organic frameworks for enhanced light harvesting.

Jin S, Son HJ, Farha OK, Wiederrecht GP, Hupp JT.

J Am Chem Soc. 2013 Jan 23;135(3):955-8. doi: 10.1021/ja3097114. Epub 2013 Jan 14.

PMID:
23293894
17.

Charge generation in PbS quantum dot solar cells characterized by temperature-dependent steady-state photoluminescence.

Gao J, Zhang J, van de Lagemaat J, Johnson JC, Beard MC.

ACS Nano. 2014 Dec 23;8(12):12814-25. doi: 10.1021/nn506075s. Epub 2014 Dec 12.

PMID:
25485555
18.

Formation mechanism of highly luminescent silica capsules incorporating multiple hydrophobic quantum dots with various emission wavelengths.

Li C, Murase N.

J Colloid Interface Sci. 2013 Dec 1;411:82-91. doi: 10.1016/j.jcis.2013.08.053. Epub 2013 Sep 8.

PMID:
24112844
19.

Functional Si and CdSe quantum dots: synthesis, conjugate formation, and photoluminescence quenching by surface interactions.

Sudeep PK, Emrick T.

ACS Nano. 2009 Dec 22;3(12):4105-9. doi: 10.1021/nn901016u.

PMID:
19908857
20.

Surface-state-mediated charge-transfer dynamics in CdTe/CdSe core-shell quantum dots.

Rawalekar S, Kaniyankandy S, Verma S, Ghosh HN.

Chemphyschem. 2011 Jun 20;12(9):1729-35. doi: 10.1002/cphc.201100105. Epub 2011 May 12.

PMID:
21567706

Supplemental Content

Support Center