Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 77

1.

Na+/H+ antiport is essential for Yersinia pestis virulence.

Minato Y, Ghosh A, Faulkner WJ, Lind EJ, Schesser Bartra S, Plano GV, Jarrett CO, Hinnebusch BJ, Winogrodzki J, Dibrov P, Häse CC.

Infect Immun. 2013 Sep;81(9):3163-72. doi: 10.1128/IAI.00071-13. Epub 2013 Jun 17.

2.
3.

A Toll/interleukin (IL)-1 receptor domain protein from Yersinia pestis interacts with mammalian IL-1/Toll-like receptor pathways but does not play a central role in the virulence of Y. pestis in a mouse model of bubonic plague.

Spear AM, Rana RR, Jenner DC, Flick-Smith HC, Oyston PC, Simpson P, Matthews SJ, Byrne B, Atkins HS.

Microbiology. 2012 Jun;158(Pt 6):1593-606. doi: 10.1099/mic.0.055012-0. Epub 2012 Mar 8.

PMID:
22403187
4.

The NlpD lipoprotein is a novel Yersinia pestis virulence factor essential for the development of plague.

Tidhar A, Flashner Y, Cohen S, Levi Y, Zauberman A, Gur D, Aftalion M, Elhanany E, Zvi A, Shafferman A, Mamroud E.

PLoS One. 2009 Sep 14;4(9):e7023. doi: 10.1371/journal.pone.0007023.

5.

The Yfe and Feo transporters are involved in microaerobic growth and virulence of Yersinia pestis in bubonic plague.

Fetherston JD, Mier I Jr, Truszczynska H, Perry RD.

Infect Immun. 2012 Nov;80(11):3880-91. doi: 10.1128/IAI.00086-12. Epub 2012 Aug 27.

6.

The role of the phoPQ operon in the pathogenesis of the fully virulent CO92 strain of Yersinia pestis and the IP32953 strain of Yersinia pseudotuberculosis.

Bozue J, Mou S, Moody KL, Cote CK, Trevino S, Fritz D, Worsham P.

Microb Pathog. 2011 Jun;50(6):314-21. doi: 10.1016/j.micpath.2011.02.005. Epub 2011 Feb 12.

PMID:
21320584
7.

Survival protein A is essential for virulence in Yersinia pestis.

Southern SJ, Scott AE, Jenner DC, Ireland PM, Norville IH, Sarkar-Tyson M.

Microb Pathog. 2016 Mar;92:50-3. doi: 10.1016/j.micpath.2015.12.013. Epub 2015 Dec 25.

8.

Physiological role of nhaB, a specific Na+/H+ antiporter in Escherichia coli.

Pinner E, Kotler Y, Padan E, Schuldiner S.

J Biol Chem. 1993 Jan 25;268(3):1729-34.

9.

Effect of MarA-like proteins on antibiotic resistance and virulence in Yersinia pestis.

Lister IM, Mecsas J, Levy SB.

Infect Immun. 2010 Jan;78(1):364-71. doi: 10.1128/IAI.00904-09. Epub 2009 Oct 19.

11.

Circumventing Y. pestis Virulence by Early Recruitment of Neutrophils to the Lungs during Pneumonic Plague.

Vagima Y, Zauberman A, Levy Y, Gur D, Tidhar A, Aftalion M, Shafferman A, Mamroud E.

PLoS Pathog. 2015 May 14;11(5):e1004893. doi: 10.1371/journal.ppat.1004893. eCollection 2015 May.

12.

Role of a new intimin/invasin-like protein in Yersinia pestis virulence.

Seo KS, Kim JW, Park JY, Viall AK, Minnich SS, Rohde HN, Schnider DR, Lim SY, Hong JB, Hinnebusch BJ, O'Loughlin JL, Deobald CF, Bohach GA, Hovde CJ, Minnich SA.

Infect Immun. 2012 Oct;80(10):3559-69. doi: 10.1128/IAI.00294-12. Epub 2012 Jul 30.

13.

Roles of chaperone/usher pathways of Yersinia pestis in a murine model of plague and adhesion to host cells.

Hatkoff M, Runco LM, Pujol C, Jayatilaka I, Furie MB, Bliska JB, Thanassi DG.

Infect Immun. 2012 Oct;80(10):3490-500. doi: 10.1128/IAI.00434-12. Epub 2012 Jul 30.

14.

The plague virulence protein YopM targets the innate immune response by causing a global depletion of NK cells.

Kerschen EJ, Cohen DA, Kaplan AM, Straley SC.

Infect Immun. 2004 Aug;72(8):4589-602.

15.

Role of Tellurite Resistance Operon in Filamentous Growth of Yersinia pestis in Macrophages.

Ponnusamy D, Clinkenbeard KD.

PLoS One. 2015 Nov 4;10(11):e0141984. doi: 10.1371/journal.pone.0141984. eCollection 2015.

16.

Characterization of the Na⁺/H⁺ antiporter from Yersinia pestis.

Ganoth A, Alhadeff R, Kohen D, Arkin IT.

PLoS One. 2011;6(11):e26115. doi: 10.1371/journal.pone.0026115. Epub 2011 Nov 15.

17.

A Yersinia pestis tat mutant is attenuated in bubonic and small-aerosol pneumonic challenge models of infection but not as attenuated by intranasal challenge.

Bozue J, Cote CK, Chance T, Kugelman J, Kern SJ, Kijek TK, Jenkins A, Mou S, Moody K, Fritz D, Robinson CG, Bell T, Worsham P.

PLoS One. 2014 Aug 7;9(8):e104524. doi: 10.1371/journal.pone.0104524. eCollection 2014.

18.

Effect of deletion of the lpxM gene on virulence and vaccine potential of Yersinia pestis in mice.

Anisimov AP, Shaikhutdinova RZ, Pan'kina LN, Feodorova VA, Savostina EP, Bystrova OV, Lindner B, Mokrievich AN, Bakhteeva IV, Titareva GM, Dentovskaya SV, Kocharova NA, Senchenkova SN, Holst O, Devdariani ZL, Popov YA, Pier GB, Knirel YA.

J Med Microbiol. 2007 Apr;56(Pt 4):443-53.

PMID:
17374882
19.

Inheritance of the lysozyme inhibitor Ivy was an important evolutionary step by Yersinia pestis to avoid the host innate immune response.

Derbise A, Pierre F, Merchez M, Pradel E, Laouami S, Ricard I, Sirard JC, Fritz J, Lemaître N, Akinbi H, Boneca IG, Sebbane F.

J Infect Dis. 2013 May 15;207(10):1535-43. doi: 10.1093/infdis/jit057. Epub 2013 Feb 12.

PMID:
23402825
20.

Properties and sequence of the NhaA Na+/H+ antiporter of Vibrio parahaemolyticus.

Kuroda T, Shimamoto T, Inaba K, Tsuda M, Tsuchiya T.

J Biochem. 1994 Nov;116(5):1030-8.

Supplemental Content

Support Center